Supporting Information for

Electrostatic self-assembled graphene oxidecollagen scaffolds towards a three-dimensional microenvironment for biomimetic applications

André F. Girão¹, Gil Gonçalves¹, Kulraj S. Bhangra², James B. Phillips², Jonathan

Knowles², Gonzalo Hurietta¹, Manoj K. Singh¹, Igor Bdkin¹, António Completo¹, Paula A. A. P. Marques¹*.

¹TEMA, Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal

²Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, 256 Gray's Inn Road, London WC1X 8LD, United Kingdom.

Hydrogel formation testing

Figure S1 describes the influence of the medium pH and the collagen/GO w/w ratio relatively to the gelation process. It is observable that only a few GO-Col samples have passed the tube inversion test and therefore were considered to be consistent and stable hydrogels. It is also noticed that the collagen % needed to crosslink the GO sheets decreases with the increasing pH.

Figure S1. Photographs of 4 mg/mL GO solutions mixed and shaken with collagen at different weight ratios and pH values: 2; 4 and 6. From left to right, Col/GO (w/w %) = 6, 12, 18, 24, 30, 36, 42 and 48.

XPS analysis

Figure S2. Normalized C1s core levels obtained for a) GO and b) collagen.

GO	Functional group	BE (eV)	FWHM (eV)	at. %
	C-C	284.5	1.3	35
	C-O	286.5	1.2	41
	C=O and O-C=O	287.5	2.9	24
Collagen	C-C	284.5	1.3	44
	C-N	285.7	1.4	32
	C=O	287.6	1.3	24

Table S 1. Elemental composition of GO and collagen samples obtained by XPS.

AFM friction tests

Relatively to the AFM friction tests, the nominal adhesion energy (W_{adh}) can be obtained from the adhesion force (F_{adh}) between a sphere and a flat surface by the Maugis–Dugdale theory $W_{adh} = F_{adh}/(\lambda \pi R_{tip})$, by assuming that both surfaces are ideal (without roughness).¹ In case of SiO₂ cantilever tip λ is equal to 1.66² and R_{tip} is equal to 10nm (PPP-CONTR, Nanosensors). In our studies it was observed higher adhesion force for collagen at GO surface than for pure collagen, 0.132 Jm² and 0.045 Jm² respectively (Table S2). These results showed a stronger interaction between collagen molecules and SiO₂ cantilever tip that could be attributed to the higher induced ordering³ or even functionalization⁴ of molecular collagen at GO surface.

Table S 2. Friction coefficient (K_{fri}), adhesion force (F_{adh}) and adhesion energy (W_{adh}) for GO, Collagen and Go-Col obtained from the respective Frictional versus load curves.

	k _{fric}	F _{adh} (nN)	W _{adh} (J m ²)
GO	0.22	5.7	0.109
Collagen	0.02	2.38	0.046
GO-Col	0.13	6.9	0.132

Swelling tests

Figure S3 shows how the pH of the medium and the % of Col used during the GO-Col hydrogel synthesis affected the swelling ratio of the GO-Col scaffolds. It is observable that the swelling equilibrium is achieved in the first hour of MilliQ water immersion. The compressive moduli of the GO-Col scaffolds at dry and wet states were determined by analysing the stress-strain curves (Fig. S4, S5 and S6). The final results are presented in Fig S7, where it is possible to observe not only the effect of the pH and the % Col present into the system, but also the influence of the water uptake on the mechanical properties of each GO-Col scaffold.

Figure S 3. Swelling ratio of the GO-Col scaffolds after 1h and 24h.

Figure S4. Compressive stress-strain curves of the GO-Col scaffolds at pH 2. **a-b**) 18% of collagen/GO w/w ratio; **c-d**) 24% of collagen / GO w/w ratio.

Figure S5. Compressive stress-strain curves of the GO-Col scaffolds at pH 4. a-b) 18% of

collagen/GO w/w ratio; c-d) 24% of collagen / GO w/w ratio.

Figure S6. Compressive stress-strain curves of the GO-Col scaffolds at pH 6. **a-b**) 18% of collagen/GO w/w ratio.

Figure S7. Comparison of the compressive moduli of the GO-Col scaffolds at the dry and wet states.

Quantitative analysis using XPS

	C1s fit				C1s /	C1s /
Sample	Functional group	BE (eV)	FWHM (eV)	at. (%)	Os1 ratio	N1s ratio
rGO-Col	C Sp ²	284.5	0.8	34	5	9.6
	C Sp ³ / C-N	285.1	1.3	30		
	C-O	286.2	1.3	23		
	C=O	288.0	1.6	13		
GO-Col	C Sp ² / C Sp ³ / C-N	284.5	2.6	65	2.4	9.4
	С=О / С-О	286.5	2.1	35		

Table S 3. Elemental composition of rGO-Col and GO-Col samples obtained by XPS.

Swelling and compression tests of GO-Col and rGO-Col

Figure S 8. Comparison of a) the swelling ratio and b) compressive modulus of the GO-Col

and rGO-Col.

References:

- 1. T. Jiang and Y. Zhu, *Nanoscale*, 2015, **7**, 10760-10766.
- 2. R. W. Carpick, D. F. Ogletree and M. Salmeron, J. Colloid Interface Sci., 1999, 211, 395-400.
- 3. Y. Shin, J. Lee, L. Jin, M. Kim, Y.-J. Kim, J. Hyun, T.-G. Jung, S. Hong and D.-W. Han, *Journal of Nanobiotechnology*, 2015, **13**, 21.
- 4. G. Tronci, C. A. Grant, N. H. Thomson, S. J. Russell and D. J. Wood, *Journal of The Royal Society Interface*, 2014, **12**.