Electronic Supplementary Information

Thermo- and pH-Responsive Poly(N-isopropylacrylamide)-Mn-ZnS Nanocomposite for Controlled Release and Real-Time Photoluminescence Tracking of Doxorubicin

Ruo-Mei Wang,^a Qian Liu,^b Yu Zhang,^a Zhangyong Hong^b and He-Fang Wang^{*a,b}

^aResearch Center for Analytical Sciences, College of Chemistry, Nankai University. ^aKey Laboratory of Biosensing and Molecular Recognition, ^bState Key Laboratory of Medicinal Chemical Biology, ^aCollaborative Innovation Center of Chemical Science and Engineering (Tianjin), 94 Weijin Road, Tianjin 300071, China

*E-mail: wanghefang@nankai.edu.cn

Fig. S1. The UV-vis spectra of standard Dox·HCI solutions.

Fig. S2. Temperature-dependent PL spectra of PMZS nanocomposites (with equivalent Mn-ZnS of 0.015 g L^{-1}) and raw Mn-ZnS (0.015 g L^{-1}) in MES-Tris buffers (10 mM, pH 6.5) excited at 320 nm.

Fig. S3. FT-IR spectra of PMZS-8 and raw Mn-ZnS QDs.

Fig. S4. TEM images of PMZS-8.

Fig. S5. Stability of 600 nm emission of PMZS-8 (0.06 g L⁻¹) at 25 °C in (a) pH 5.5; (c) pH 6.5; (e) pH 7.4 and 37 °C in (b) pH 5.5, (d) pH 6.5, (f) pH 7.4 MES-Tris buffer (10 mM)

Fig. S6. Fluorescence imaging of 4T1 cells exposed to free Dox (5 μ M) for 0.5, 2, 4 and 8 h. The pictures were taken by a fluorescence microscope in bright field, under excitation of 340-390 nm (for DAPI) and 460-495 nm (for Dox).

Table S1

Exponential Fitting ^[a]										
T (°C)	τ ₁ (μs)	A ₁ (%)	τ ₂ (μs)	A ₂ (%)	X ²	τ _{av} (μs)				
25	500.6±36.2	70.5±3.4	2884±207	29.5±1.9	0.9313	1205±87				
30	434.7±37.1	71.8±4.7	2525±181	28.2±1.9	0.8431	1024±78				
34	483.6±27.2	75.9±2.3	3381±322	24.1±1.2	1.068	1181±98				
37	487.5±44.2	73.1±4.0	2731±287	26.9±2.5	0.9987	1090±110				

Decay Parameters of PMZS-8 at Different Temperatures Obtained by 2-

^[a] $F(t) = A_1 e^{-t/\tau 1} + A_2 e^{-t/\tau 2}$

The decay curve of the RTP emission of 0.06g L⁻¹ PMZS-8 at different temperatures was excited by N₂ laser at 320 nm, and scanned three times of emission at 600 nm (300 channels). The emission slit at 20 nm with integration time of 25 μ s.

Table S2

The Loading Capacity, Release Condition and Accumulative Release Amount of Dox by

Nanocarriers	Loading capacity (%)	Release condition	Accumulative Release amount (%)	Ref
PNIPAm-Mn-ZnS	15.20	рН 5.5, 37 °C, 24 h	81.50	This Work
UCNPs@mSiO ₂ -P(NIPAm-MAA)	8.60	pH 5.0, 45 °C, 20 h	52.20	1
MSN-NH ₂ @colipid	29.51	рН 5.5, 37 °C, 24 h	76.80	2
PNDGPs	20.70	pH 5.5, 37 °C, 48 h	~33.00	3
POEGMA-b-P(NIPAm-NBA-Gd)	4.90	pH 5.0, 37 °C, UV, 12 h	~73.00	4
M-MSN-P(NIPAm-MAA)	21.50	рН 5.0, 37 °C, 24 h	80.20	5
Au-nanocage@mSiO ₂ @PNIPAm	23.50	pH 5.0, NIR, 8 h	78.90	6
P(MAA-DVB)-g-PNIPAm	12.90	pH 5.6, 37 °C, 72 h	~50.00	7

Some PNIPAm-Based Nanocarriers

UCNPs@mSiO₂-P(NIPAm-MAA): NaYF₄:Yb³⁺/Er³⁺ core (UCNPs) with poly(N-isopropylacrylamide-co-methacrylic acid) gated mesoporous silica shell

MSN-NH₂@colipid: soyphosphatidylcholine-poly(N-isopropylacrylamide-co-methacrylic acid-co-octadecyl acrylate) bilayer coated mesoporous silica nanoparticales

PNDGPs: amphiphilic polyphosphazenes with poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) and ethyl glycinate side groups

POEGMA-b-P(NIPAm-NBA-Gd): poly[oligo(ethylene glycol) monomethyl ether methacrylate]-b-poly(Nisopropylacrylamide-co-o-nitrobenzyl acrylate-co-Gd³⁺) diblock copolymer

M-MSN-P(NIPAm-MAA): poly(N-isopropylacrylamide-co-methacrylic acid) coated magnetic mesoporous silica nanoparticles

Au-nanocage@mSiO₂@PNIPAm: gold nanocages core with poly(N-isopropylacrylamide) coated mesoporous silica shell

P(MAA-DVB)-g-PNIPAm: nanocapsule with poly(methacrylic acid-co-divinylbenzene) inner shell and poly(N-isopropylacrylamide) grafted chain

Reference

- 1 X. Zhang, P. Yang, Y. Dai, P. a. Ma, X. Li, Z. Cheng, Z. Hou, X. Kang, C. Li and J. Lin, *Adv. Funct. Mater.*, 2013, **23**, 4067-4078.
- 2 X. Wu, Z. Wang, D. Zhu, S. Zong, L. Yang, Y. Zhong and Y. Cui, *Acs Appl. Mater. Interfaces*, 2013, 5, 10895-10903.
- 3 L. Y. Qiu, X. L. Wu and Y. Jin, *Pharmaceut. Res.*, 2009, **26**, 946-957.
- 4 Y. Li, Y. Qian, T. Liu, G. Zhang and S. Liu, *Biomacromolecules*, 2012, **13**, 3877-3886.
- 5 B. Chang, X. Sha, J. Guo, Y. Jiao, C. Wanga and W. Yang, *J. Mater. Chem.*, 2011, **21**, 9239-9247.
- 6 J. Yang, D. Shen, L. Zhou, W. Li, X. Li, C. Yao, R. Wang, A. M. El-Toni, F. Zhang and D. Zhao, *Chem. Mater.*, 2013, **25**, 3030-3037.
- 7 L. Chen, Z. Peng, Z. Zeng, Y. She, J. Wei and Y. Chen, J. Polym. Sci. Pol. Chem., 2014, 52, 2202-2216.