Supporting Information for

Achieving enhanced NIR light-induced toxicity via novel hybrid magnetic nanoparticles

Bingxue Qi,^{ab} Qi Li,^c and Lining Miao*a

^a Department of Nephrology, the Second Hospital of Jilin University, Changchun,

China

^b Department of Endocrinology, Jilin Province People's Hospital, Changchun, China

^c Department of Nephrology, the Central Hospital of Jilin City, Jilin, China

E-mail: miaoliningjlu@163.com

Figure S1. FT-IR spectrum (A) and thermogravimetric analysis curve (B) of Zn^{2+} -doped magnetic nanoparticles.

Figure S2. SEM image of Zn^{2+} -doped magnetic nanoparticles prepared without the addition of PEG molecules.

Figure S3. TEM images of Mg^{2+} - (A), Mn^{2+} - (B), and Ni^{2+} -doped magnetic nanoparticles (C). Room temperature magnetic hysteresis loops of above samples (D).

Figure S4. TEM image of Zn^{2+} -doped magnetic nanoparticles after irradiation at 2 W/cm² for 0.5 h (A) and 1 h (B). Size distribution of Zn^{2+} -doped magnetic nanoparticles before (C) and 1 h after irradiation at 2 W/cm² (D) based on TEM analysis.

Figure S5. Concentration-dependent viabilities of 786-O cells incubated with Zn2+-

doped magnetic nanoparticles.

Figure S6. Fluorescence images of calcein AM/PI dual-stained 786-O cells 24 h after co-incubation with Zn^{2+} -doped magnetic nanoparticles. The scale bar is 100 μ m.

Figure S7. Flow cytometry analysis of ROS generation upon different treatments based on three independent experiments.

Figure S8. Viabilities of 4T1 cells incubated with Zn^{2+} -doped magnetic nanoparticles treated with a NIR light irradiation (A). Fluorescence images of calcein AM/PI dual-stained 4T1 cells 24 h after incubation with Zn^{2+} -doped magnetic nanoparticles (B). The scale bar is 100 µm.

Figure S9. SEM image (A), TEM image (B), wide-angle XRD pattern (C), EDS spectrum (D), and UV-vis spectra (E) of pure Fe_3O_4 nanoparticles prepared with a similar route.

Figure S10. Viabilities of 786-O cells (A) and 4T1 cells (B) incubated with pure

Fe₃O₄ nanoparticles prepared with a similar route.

Table S1. Chemical compositions, average sizes, and saturation magnetization values of various hybrid magnetic nanoparticles.

metal precursor	chemical composition	average size (nm)	saturation magnetization (emu/g)
ZnCl ₂	$Zn_{0.4}Fe_{0.6}Fe_2O_4$	150 nm	76.1 emu/g
MgCl ₂ ·6H ₂ O	$Mg_{0.4}Fe_{0.6}Fe_2O_4$	155 nm	64.7 emu/g
MnCl ₂ ·4H ₂ O	$Mn_{0.7}Fe_{0.3}Fe_2O_4$	150 nm	45.3 emu/g
NiCl ₂ ·6H ₂ O	$Ni_{0.3}Fe_{0.7}Fe_2O_4$	140 nm	47.8 emu/g
FeCl ₃ ·6H ₂ O	pure Fe ₃ O ₄	140 nm	76.8 emu/g