Micelle-provided microenvironment facilitating the formation of single-handed helical polymer-based nanoparticles

Biao Zhao^{a,b} and Jianping Deng^{a,b*}

^a State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China

^b College of Materials Science and Engineering, Beijing University of Chemical

Technology, Beijing 100029, China

E-mail:

dengjp@mail.buct.edu.cn

Run.	chiral additive	$M_{ m n}{}^{ m a}$	$M_{ m w}/M_{ m n}{}^{ m a}$
1	R-PEA	8100	1.72
2	S-PEA	9000	1.70
3	none	9200	1.77
4	R(S)-PEA	9400	1.59
5	D-menthol	9500	1.75
6	L-menthol	8300	1.73

Table S1. GPC data of polyM obtained by emulsion polymerizations in the presence of $(nbd)Rh^+B^-(C_6H_5)_4$ and chiral additive.

^a Determined by GPC (polystyrenes as standards, THF as eluent).

Table S2. GPC data of polyM obtained by emulsion polymerizations in the presence

Run.	chiral additive	$M_{ m n}{}^{ m a}$	$M_{ m w}/M_{ m n}{}^{ m a}$
1	R-PEA	7400	1.64
2	S-PEA	7600	1.41
3	D-menthol	10200	1.77
4	L-menthol	9400	1.59

of [(nbd)RhCl]₂ and chiral additive.

^a Determined by GPC (polystyrenes as standards, THF as eluent).

Figure. S1. (A) CD and (B) UV-vis spectra of polyM emulsions in the presence of $[(nbd)RhCl]_2$ and chiral menthol. The spectra were recorded at 25 °C.

Figure. S2. (A) CD and (B) UV-vis spectra of polyM solutions after solution polymerization in the presence of $[(nbd)RhCl]_2$ and chiral PEA. The solution concentration was approximately 1 mmol/L by monomer units. The spectra were recorded at 25 °C.

Figure S3. Effects of temperature on UV-vis spectra of polyM emulsion obtained by HSSEP in the presence of R-PEA.

Figure S4. FI-IR spectra of (a) pure polyM nanoparticles and (b) optically active core/shell nanoparticles (KBr tablet).

Figure S5. Effects of temperature on UV-vis spectra of core/shell nanoparticles in the presence of R-PEA.