Supplementary Information

POSS-based Meso-/macro-porous Covalent Networks: Supporting and Stabilizing Pd for Suzuki-Miyaura Reaction at Room Temperature

Chenjun Zhang,^a Yan Leng,^{*a} Pingping Jiang,^a and Dan Lu^a

^a The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China. Fax: +86-510-85917763; Tel: +86-510-85917090; E-mail: lengyan1114@126.com.

Sample	N (%)	C (%)	H (%)	$S_{BET}\left(m^{2}/g ight)$	Pore volume (m ³ /g)	Pore size (nm)	Molar ratio POSS/PDA
POSS-TPA _a	8.88	43.08	8.16	206	1.11	21.5	1/2.7
POSS-TPA _b	8.85	47.25	8.42	151	0.89	23.5	1/2.8
POSS-TPA _c	8.80	48.83	8.30	144	1.12	31.3	1/2.9
POSS-TPA _d	8.40	50.75	8.24	120	0.61	20.2	1/3.3

Table S1. CHN elemental analysis and BET surface areas of samples POSS-TPA_x.

Entry	Catalyst amount (g)	Yield	TOP		
		10 min	30 min	TOF	
	1	0.005	17	49	1133
	2	0.01	90	92	3033
	3	0.015	91	93	2000
	4	0.02	92	99	1533

Table S2. Suzuki coupling of bromobenzene with phenylboronic acid over catalyst Pd/POSS-TPAa.

Reaction conditions: phenylboronic acid (1.5 mmol), bromobenzene (1 mmol), Na₂CO₃ (0.15 g), deionized water (3 mL) and ethanol (3 mL), room temperature. ^a The yield of product. ^b TOF = [mol product]/([mol Pd]]reaction time 1/6 h]).

Table S3. The catalytic performance of Pd/POSS-TPA $_a$ for the Suzuki coupling reaction with differentphenylboronic acid/bromobenzene molar ratio.

Entry	Phenylboronic acid/bromobenzene	Yield ^a (%)		TOE
	molar ratio	10 min	30 min	101.
1	1.1:1	80	87	1333
2	1.3:1	81	92	1349
3	1.5:1	92	98	1533

Reaction conditions: bromobenzene (1 mmol), Na₂CO₃ (0.15 g), deionized water (3 mL) and ethanol (3 mL), catalyst (0.02 g, 0.0036 mmol), room temperature. ^a The yield of product. ^b TOF = [mol product]/([mol Pd][reaction time 1/6 h]).

Figure S1. XRD pattern of POSS.

Figure S2. EDS elemental mapping of Si element for POSS-TPA_a.

Figure S3. TG curves of (a) POSS-TPA $_a$, (b) POSS-TPA $_b$, (c) POSS-TPA $_c$, and (d) POSS-TPA $_d$.

Figure S4. FT-IR spectra of (a) $POSS-TPA_b$, (b) $POSS-TPA_c$, and (c) $POSS-TPA_d$.

Figure S5. (A) Nitrogen adsorption–desorption isotherms and (B) BJH pore size distributions of (a) POSS-TPA_b, (b) POSS-TPA_c, and (c) POSS-TPA_d.

Figure S6. EDS elemental mapping of Pd element for Pd/POSS-TPA_a.

Entry	Catalyst	Reaction conditions	Yield(%)	TOF(h ⁻¹)	Ref. (year)
1	$\begin{array}{c} Fe_{3}O_{4}@C-\\ Pd@mCeO_{2}\\ (Pd \ 3.05 \ wt\%) \end{array}$	Bromobenzene $(1.0 \text{ mmol}),$ Phenylboronicacid $(1.2 \text{ mmol}), \text{ K}_2\text{CO}_3$ $(2.0 \text{ mmol}), 5.0 \text{ mL ETOH/H}_2\text{O}$ $(1:1), 80^\circ\text{C}, 3h$	95	116.3	1(2015)
2	Pd@Im-Phos- SiO ₂ @Fe ₃ O ₄ (Pd 0.3 mol%)	Bromobenzene (1.0 mmol), Phenylboronicacid (1.5 mmol), K_2CO_3 (1.5 mmol), 2.0 mL ETOH/H ₂ O (1:1), 60 °C, 18h	90	16.67	2(2016)
3	Ionic liquid-tagged palladium complex (Pd 0.1 mol%)	Bromobenzene (1.0 mmol), Phenylboronicacid (1.2 mmol), K ₂ CO ₃ (2.0 mmol), 5.0 mL H ₂ O, r.t. 50min	76	912	3(2014)
4	Bisoxazoline/Pd composite microsphere (Pd 0.1 mol%)	Bromobenzene (1.0 mmol) , Phenylboronicacid (1.0 mmol) , K ₂ CO ₃ (2.0 mmol) , 5.0 mL H ₂ O/PEG400 $(10:1)$, 70°C, 4h	98	245	4(2015)
5	Pd/C (Pd 0.7 mol%)	Bromobenzene (2.0 mmol), Phenylboronicacid (2.5 mmol), KOH (8.0 mmol), NaCl (6.0 g), 6.0 mL Di-n-butyl ether, 100°C, 1h	24.7	35.2	5(2014)
6	Pd/bentonite (Pd 0.06 mol%)	Bromobenzene (0.5 mmol), Phenylboronicacid (0.6 mmol), K_2CO_3 (1.0 mmol), 5.0 mL MeOH, r.t. 5h	95	316	6(2013)
7	Pd/UiO-66 (Pd 0.59 mol%)	Bromobenzene (0.5 mmol) , Phenylboronicacid (0.6 mmol) , Na ₂ CO ₃ (1.0 mmol) , 6.0 mL ETOH/H ₂ O $(1:2)$, 80°C, 2h	100	86	7(2016)
8	Pd/COF-LZU1 (Pd 0.5 mol %)	Bromobenzene (1.0 mmol), Phenylboronicacid (1.5 mmol), K ₂ CO ₃ (2.0 mmol), 4.0 mL p-xylene, 150°C, 3h	97	64.67	8(2011)
9	HMMS–salpr–Pd (Pd 1mol%)	Bromobenzene (0.5 mmol) , Phenylboronicacid (0.6 mmol) , K_2CO_3 (1.0 mmol) , 6.0 mL ETOH/H ₂ O $(1:1)$, 70 °C, 6h	92	16.25	9(2015)
10	Fe ₃ O ₄ /PPy–Pd (Pd 1 mol%)	Bromobenzene (0.5 mmol) , Phenylboronicacid (0.75 mmol) , K ₂ CO ₃ (1.0 mmol) , 5.0 mL H ₂ O, 70°C, 8h	96.5	12.06	10(2015)
11	PdNP-2 (Pd 0.001 mol%)	Bromobenzene (1.0 mmol), Phenylboronicacid (1.5 mmol), K ₃ PO ₄ (2.0 mmol), 10.0 mL ETOH/H ₂ O (1:1), 80°C, 24h	89	3708	11(2016)
12	Wool–Pd (Pd 0.45 mol %)	Bromobenzene (0.2 mmol), Phenylboronicacid (0.22 mmol), K_2CO_3 (0.3 mmol), 5.0 mL H ₂ O, 75°C, 3h	85	62.9	12(2012)
13	Pd/bentonite (Pd 0.06 mol %)	Bromobenzene (0.5 mmol) , Phenylboronicacid (0.6 mmol) , K_2CO_3 (1.0 mmol) , 5.0 mL MeOH, r.t. 5h	95	316.6	13(2013)
14	Pd@imine-SiO2 (Pd 0.463 mol%)	Bromobenzene (0.5 mmol), Phenylboronicacid (0.6 mmol), Na ₂ CO ₃ (1.5 mmol), 4 ml iPrOH/H ₂ O (1:1), r.t. 1h	100	215.9	14(2015)
15	Pd/POSS-TPA _a (Pd 0.36 mol %)	Bromobenzene (1 mmol), Phenylboronicacid (1.5 mmol), Na ₂ CO ₃ (1.0 mmol), 6.0 mL ETOH/H ₂ O (1:1), r.t, 10 min	92	1533	Our work

Table S4 Comparison of the catalytic efficiency of Pd/POSS-TPA_{*a*} with previously reported catalysts.

Reference

1 Y. Li, Z. Zhang, J. Shen and M. Ye. Dalton Trans., 2015, 44, 16592-16601.

2 M. Gholinejad, M. Razeghi, A .Ghaderi and P. Biji. Catal. Sci. Technol., 2016, 6, 3117-3127.

3 P. Nehra, B. Khungar, K. Pericherla, S.C.Sivasubramanian and A. Kumar. *Green Chem.*, 2014, 16, 4266-4271.

4 J. Wang, Y. Zhong, X. Wang, Y. Hu, G. Yue and Y. Pan. Green Chem., 2016, 18, 967-973.

5 B. Zhang, J. Song, H. Liu, J. Ma, H. Fan, W. W, P. Zhang and B. Han. *Green Chem.*, 2014, 16, 1198-1201.

6 G. Ding, W. Wang, T. Jing and B. Han. Green Chem., 2013, 15, 3396-3403.

7 M. Pourkhosrvani, S. Dehghanpour and F.farzaneh. 2016, 146, 499-508.

8 S. Ding, J. Gao, Q. Wang, Y. Zhang, W. Song. C. Su and W. Wei. J. Am. Chem. Soc., 2011, 133, 19816-19822.

9 H. Liu, P. Wang, H. Yang, J. Niu and J. Ma. New J. Chem., 2015, 39, 4343-4350.

10 X. Sun, Y. Zheng, L. Sun, H. Su and C.Qi. Catal Lett., 2015, 145, 1047-1053.

11 C. Wang, R. Ciganda, L. Salmon, D. Gregurec, J. Irigoyen, S. Moya, J. Ruzi and D. Astruc. Angew. Chem. Int. Ed., 2016, 55, 3091-3095.

12 H. Ma, W. Cao, Z. Bao and ZQ. Lei. Catal. Sci. Technol., 2012, 2, 2291-2296.

13 G. Ding, W. Wang, T. Jiang, B. Han. Green Chem., 2013, 15, 3396-3403.

14 T. Begum, M. Mondal, PK. Gogoi, U. Bora. RSC Advance., 2015, 5, 38085-38092.