## **Supporting Materials**

## An unusual (4,4)-connected 3D porous cadmium metal-organic framework as a luminescent sensor for detection of nitrobenzene

Shan Zhao, Xiu-Xiu Lv, Lu-Lu Shi, Bao-Long Li\* and Bing Wu State and Local Joint Engineering Laboratory for Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China. E-mail: <u>libaolong@suda.edu.cn</u>

|                   |           | 1                   |          |
|-------------------|-----------|---------------------|----------|
| Cd(1)-O(3)#1      | 2.266(6)  | Cd(1)-O(5)          | 2.275(6) |
| Cd(1)-N(6)#2      | 2.287(7)  | Cd(1)-N(3)          | 2.304(7) |
| Cd(1)-O(2)        | 2.344(6)  | Cd(1)-O(1)          | 2.405(5) |
| O(3)#1-Cd(1)-O(5) | 123.7(2)  | O(3)#1-Cd(1)-N(6)#2 | 89.3(2)  |
| O(5)-Cd(1)-N(6)#2 | 85.9(2)   | O(3)#1-Cd(1)-N(3)   | 81.7(2)  |
| O(5)-Cd(1)-N(3)   | 87.6(2)   | N(6)#2-Cd(1)-N(3)   | 163.6(3) |
| O(3)#1-Cd(1)-O(2) | 90.6(2)   | O(5)-Cd(1)-O(2)     | 145.7(2) |
| N(6)#2-Cd(1)-O(2) | 93.9(2)   | N(3)-Cd(1)-O(2)     | 99.9(2)  |
| O(3)#1-Cd(1)-O(1) | 140.1(2)  | O(5)-Cd(1)-O(1)     | 93.1(2)  |
| N(6)#2-Cd(1)-O(1) | 110.2(2)  | N(3)-Cd(1)-O(1)     | 85.2(2)  |
| O(2)-Cd(1)-O(1)   | 54.84(18) |                     |          |
|                   |           |                     |          |

Table S1 Selected bond lengths and angles for 1 (Å and °).

Symmetry transformations used to generate equivalent atoms: #1 -x+1/2, y-1/2, -z+1/2; #2 x+1/2, -y+3/2, z+1/2.

| Table S2 H | lydrogen | bonds | for 1 ( | (Å and ° | ). |
|------------|----------|-------|---------|----------|----|
|------------|----------|-------|---------|----------|----|

| D-H-A                         | d(D-H)    | d(H···A) | D(D···A)  | <(DHA) |
|-------------------------------|-----------|----------|-----------|--------|
| O(5)-H(5A)-O(6) <sup>i</sup>  | 0.89(2)   | 1.80(2)  | 2.694(10) | 177(7) |
| O(5)-H(5B)-O(1) <sup>ii</sup> | 0.89(2)   | 1.94(5)  | 2.712(8)  | 143(8) |
| O(6)-H(6A)-O(4)               | 0.90(2)   | 2.04(6)  | 2.820(9)  | 143(6) |
| O(6)-H(6B)-O(3) <sup>i</sup>  | 0.900(19) | 2.05(2)  | 2.822(9)  | 143(4) |
| O(7)-H(7C)-O(4)               | 0.90(2)   | 2.05(2)  | 2.875(19) | 150(6) |
| O(7)-H(7D)-O(8) <sup>ii</sup> | 0.90(2)   | 2.07(4)  | 2.97(4)   | 178(8) |
| O(8)-H(8C)-O(6)i              | 0.90(2)   | 2.20(2)  | 2.89(2)   | 133(3) |
| O(8)-H(8D)-O(7) <sup>ii</sup> | 0.90(2)   | 2.40(2)  | 2.97(4)   | 124(4) |
|                               |           |          |           |        |

Symmetry transformations used to generate equivalent atoms: i -x+1/2, y-1/2, -z+1/2; ii -x+1/2, - y+3/2, -z.



Fig. S1 Schematic depiction of the  $[Cd_2(btec)]_n$  2D network of 1. The red balls present the 4-connected btec ligands.



Fig. S2 PXRD patterns of the measured and simulated of 1.



Fig. S3 UV-vis absorption spectra of 1 dispersed in acetone solvent (1@NBZ@acetone) in presence of different concentration of nitrobenzene (NBZ).