1 **Electronic Supporting Information (ESI)** 2 Surfactin functionalized poly(methyl methacrylate) as eco-friendly nano-adsorbent: from size 3 controlled scalable fabrication to adsorptive removal of inorganic and organic pollutants Debasree Kundu^{a,‡}, Chinmay Hazra^{a,‡}, Aniruddha Chatterjee^{b,*}, Ambalal Chaudhari^a, 4 Satyendra Mishra^b, Amol Kharat^c and Kiran Kharat^d 5 6 aSchool of Life Sciences, North Maharashtra University, Jalgaon, Maharashtra, India 7 ^bUniversity Institute of Chemical Technology, North Maharashtra University, Jalgaon, 8 Maharashtra, India 9 cModern College of Pharmacy, Moshi, Pune, Maharashtra, India 10 ^dDepartment of Biotechnology, Deogiri college, Aurangabad, Maharashtra, India 11 12 13 14 15 16 *Corresponding author. Present address: Maharashtra Institute of Technology, Aurangabad, 17 18 Maharashtra, India. E-mail: aniruddha chatterjee2006@yahoo.co.in; aniruddha.chatterjee@mit.asia 19

20 [‡]These authors contributed equally as first authors in this manuscript

2 Fig. S1. Overall chemical structure of surfactin lipopeptide.

Determination of monomer conversion, solid content, molecular weights and polydispersity index (PDI)

The percentage of monomer conversion to polymer and latex yield was determined by gravimetric analysis. A small sample (5-10 ml) was taken and placed quickly into a capped vial containing several drops of hydroquinone inhibitor solution to stop the polymerization. The sample was then poured into a pre-weighed watch glass and weighed. It was then dried in an oven at 120 °C until constant weight. A final measurement of the watch glass + dry polymer sample was then made. For each set of operating conditions, experiments were repeated and the repeatability of measurements was within $\pm 10\%$, as indicated by error bars on the graphical plots.

The total number of latex particles in the system (N_P) and the number of polymer chains per particle (N) as well as the conversion (X_m) are calculated according to the following equations:

$$N_P = \frac{6\rho_0 V X_m}{\rho \pi D^3} \tag{1}$$

$$N = \frac{4}{3} \frac{\rho \pi (D/2)^3 N_A}{\overline{M}_n} \tag{2}$$

$$X_m(\%) = \frac{W_1}{W_2} \times 100$$
(3)

where ρ_0 is the density of MMA (0.94 g cm⁻³ at 25 °C), V is the total volume of MMA, X_m is polymerization conversion, ρ is the <u>density</u> of PMMA (g cm⁻³ at 25 °C), D is the diameter of the particle, N_A is 6.02×10^{23} mol⁻¹, M_n is the number-average molecular weight, and W_I and W_2 are the weights of the polymer and MMA, respectively.

Energy calculations

1. Energy delivered during conventional mechanically stirred emulsion polymerization method

Voltage input in magnetic stirrer = 230 V.

Current measured using digital multimeter (Model 801, Meco Instruments Pvt. Ltd., India) =

$$37 \text{ mA} = 37 \times 10^{-3} \text{ A}.$$

Power input in overhead stirrer = voltage input × current measured = $230 (V) \times 37 \times 10^{-3} (A)$ = 8.51 W (J/s).

Time required for completion of reaction = 1 h (3600 s).

Net energy delivered during conventional method = power input in magnetic stirrer × time required for completion of reaction = $8.51 \text{ J/s} \times 3600 \text{ s} = 30636 \text{ J} = 30.636 \text{ kJ}$.

Energy supplied in form of heat to maintain reaction temperature 55 °C = $mC_{p, mix}$ (T_{process} - T_{ref}) = 130.38 × 4.0058 × (55 - 25) = 15668.3 J = 15.67 kJ.

Total energy supplied during conventional method = 30.636 + 15.67 = 46.31 kJ.

Quantity of material processed = quantity of [water + KPS + surfactin + MMA] = 100 ml +

0.25 g + 0.025 g + 5 g = 105.28 g.

Net energy supplied for processing of material using conventional method = net energy delivered during conventional method/quantity of material processed = $46.31 (kJ) / 105.28 (g) = 43.98 \times 10^{-2} (kJ/g)$. (A)

2. Energy delivered during sonochemical polymerization

Energy delivered during sonication = energy required to synthesize nPMMA.

Electrical energy delivered during sonication (indicated by the power meter) = 53.5 kJ.

Efficiency of horn taken for the calculation = 18.9% (estimated independently using calorimetric studies).

Actual energy delivered by horn during sonication = energy delivered during sonication using horn \times efficiency of horn = 53.5 \times 18.9/100 = 10.11 kJ.

Quantity of material processed = quantity of [water + KPS + surfactin + MMA] = 100 ml + 0.25 g + 0.025 g + 5 g = 105.28 g.

Net energy supplied for processing of material using sonochemical method = actual energy delivered by horn during sonication/quantity of material processed = $10.11 (kJ) / 105.28 (g) = 9.60 \times 10^{-2} (kJ/g)$. (B)

3. Energy saved

Net energy saved = [net energy supplied for processing of material using atomized microemulsion method (A)] - [net energy supplied for processing of material using sonochemical emulsion polymerization (B)] = 43.98×10^{-2} (kJ/g) - 9.60×10^{-2} (kJ/g) = 34.38×10^{-2} (kJ/g)

$$\times 10^{-2} \, (kJ/g).$$

Calculation of cavitational yield

1. Conventional mechanically stirred emulsion polymerization

Rate of polymerization = $1.26 \text{ g } \text{l}^{-1}$

Power density (J l^{-1}) = supplied total electrical energy = 46.31 kJ = 46310 J l^{-1}

Cavitational yield = $1.26 (g l^{-1}) / 46310 (J l^{-1}) = 0.27 \times 10^{-4} g J^{-1}$

2. sonochemical polymerization

Rate of polymerization = $1.51 \text{ g } \text{l}^{-1}$

Power density $(J l^{-1})$ = supplied total electrical energy = 10.11 kJ = 10110 J l^{-1}

Cavitational yield = 1.51 (g l⁻¹) / 10110 (J l⁻¹) = 1.5×10^{-4} g J⁻¹

Fig. S2. Effect of surfactin concentration (wt. % of MMA) on morphology and size of nPMMA_{SP} particles: (a) 1%, (b) 2%, (c) 3% and (d) 4%. Other conditions are same as Fig. 1.

Fig. S3. The pH dependence of zeta-potential of nPMMA_{SP} and nPMMA_{CP} particles. (Reaction conditions: nPMMA_{SP}: monomer-to-water 20 wt.%; monomer-to-initiator 0.4 wt.%; surfactin 4 wt.%, calculated vs monomer; temperature, 55 ± 2 °C; time, 1 h; nPMMA_{CP}: monomer-to-water 20 wt.%; monomer-to-initiator 0.4 wt.%; surfactin 4 wt.%, calculated vs monomer; temperature, 55 ± 2 °C; agitation, 250 rpm; time, 1 h).

Fig. S4. XRD patterns of (a) nPMMA_{SP}, (b) nPMMA_{CP} and (c) bulk PMMA.

The diffraction peak observed at 15.10° was assigned to the amorphous phase of PMMA. This peak was more prominent in nPMMA_{SP}. It suggested the crystalline nature of nPMMA_{SP} was more than nPMMA_{CP} and bulk PMMA.

Fig. S5. DSC curves of (a) nPMMA_{SP} and (b) nPMMA_{CP} and (c) bulk PMMA.

It was observed that first scan of nPMMA_{SP} showed two step exothermic peaks at 128 and 135 °C that were attributed to T_{g1} along with respective peaks of T_m arising due to the presence of little amount of surfactin (Fig. S5a). This finding corroborated with the thin shell layer of biosurfactants observed in TEM. The lower value of T_{g1} (Fig. S5b) for nPMMA_{CP} (116 °C) was due to its relatively large size and lower surface area as compared to nPMMA_{SP}. Moreover, the peak for surfactin shell could not be detected due to poor grafting of surfactin onto nPMMA in case of nPMMA_{CP}. Bulk PMMA showed regular T_g at 108 °C like commercial grade PMMA (Fig. S5c). The reason for high T_g of polymer nanoparticles than bulk PMMA might be a decrease in particle size to nano-scale that results in an increase in surface area and higher surface energy.

Fig. S6. TGA thermogram of (a) nPMMA_{SP} and (b) nPMMA_{CP} and (c) bulk PMMA.

A remarkable change in thermal behaviour between nPMMA_{SP}, nPMMA_{CP} and bulk PMMA was observed. The nPMMA_{SP} showed higher thermal stability $[d_{on} = 372 \text{ °C} \text{ and } d_{off} = 415 \text{ °C}$ with % weight loss $(W_L) = 100\%$] than nPMMA_{CP} $[d_{on} = 352 \text{ °C} \text{ and } d_{off} = 406 \text{ °C}$ with % weight loss $(W_L) = 100\%$] and bulk PMMA $[d_{on} = 282 \text{ °C} \text{ and } d_{off} = 356 \text{ °C} \text{ with } 100\% \text{ W}_L]$. Thus, the thermal stability pattern followed the order: nPMMA_{SP} > nPMMA_{CP} > bulk PMMA.

Fig. S7. Plot of the adsorption capacities against the covalent indices.

Parameter	Setting
λ	130 nm to 770 nm
RF Power	1300 W
Nebulizer	Low flow
Plasma Flow	15 l min ⁻¹
Auxiliary Flow	0.2 1 min ⁻¹
Nebulizer Flow	0.8 1 min ⁻¹
Pump Rate/ Sample Flow	1.5 ml min ⁻¹
Spray Chamber	HF resistant cyclonic
Integration Time	10-20 seconds
Number of replicates	3

Table S1. ICP-AES instrumental operating parameters used for the determination of

 potentially toxic metals binding to nano-adsorbents used in this study.

Run	MMA:KPS	S Solid content	t* _{blue} (min)	Particle	size (nm)	Polydispersity	$N \times 1018$	N
	(wl. 70)	(70)		DLS	TEM	Index	$N_p \sim 10^{-1}$	1
Sonochemical emulsion polymerization								
1	0.0	12.171 ± 0.122	11	218.137±6.554	180.011±10.550	0.952±0.012	0.913±0.552	11
2	0.1	13.153±0.321	09	138.662±11.833	106.557±10.322	0.741±0.066	3.935±0.116	23
3	0.2	14.155±0.116	07	139.538±6.115	105.086±10.555	0.894±0.092	4.664±0.562	24
4	0.3	16.882±0.344	07	104.512±8.831	81.055±7.510	0.732±0.122	6.317±0.124	21
5	0.4	27.534±0.217	04	75.421±2.832	60.225±1.511	0.554±0.092	7.883±0.323	14
6	0.5	18.682±0.217	06	90.554±7.894	79.522±1.833	0.911±0.166	7.032±0.339	19
7	1.0	17.152±0.143	06	79.552±11.446	73.625±1.723	0.655±0.124	6.964±0.321	18
8	1.5	25.551±0.222	05	72.511±10.871	63.512±3.476	0.727±0.164	6.551±0.552	14
9	2.0	22.155±0.344	05	76.025±5.112	64.533±4.222	0.643±0.088	4.877±0.803	15
10	3.0	21.693±0.255	04	75.523±3.835	66.216±3.821	0.592±0.074	3.714±0.221	17
Conv	entional polym	erization (with n	nechanical stirring)	-		-		
1	0.0	11.142±0.124	14	229.025±12.912	190.088±7.444	0.973±0.088	0.855±0.188	13
2	0.1	12.571±0.361	12	155.013±10.225	125.057±12.875	0.752±0.071	3.143±0.255	21
3	0.2	13.144±0.112	11	131.085±7.287	110.024±10.514	0.806±0.150	3.618±0.624	20
4	0.3	14.856±0.333	09	110.511±9.132	85.533±6.527	0.711±0.033	5.511±0.255	23
5	0.4	25.554±0.242	07	79.533±2.562	72.341±3.522	0.632±0.061	6.722±0.511	12
6	0.5	18.682±0.114	07	95.542±2.830	80.066±3.555	0.875±0.075	6.777±0.222	21
7	1.0	16.551±0.211	08	100.016±8.732	85.042±5.425	0.633±0.177	5.854±0.541	25
8	1.5	22.554±0.224	05	90.088±6.656	82.552±6.138	0.633±0.055	6.183±0.207	15
9	2.0	21.133±0.313	05	95.035±8.555	90.086±13.565	0.662 ± 0.021	4.537±0.212	18
10	3.0	20.652±0.115	05	135.017±8.937	116.211±11.558	0.697±0.044	3.653±0.443	14

*: the time when the colour of the microemulsion turns blue

Table S2. Effect of monomer-to-initiator weight ratios on particle size, PDI, conversion, N_P and N of the particles. Conditions are as in Fig. 1.

Run	MMA:water (wt.%)	Particle size (nm)		Polydispersity index	N 1018	
		DLS TEM			$N_p \times 10^{10}$	1
Sono	chemical emulsion polymerization	1			1	I
1	5	88.542	66.521	0.622	6.783	14
2	10	119.515	85.017	0.721	6.557	14
3	15	114.553	90.044	0.713	5.883	15
3	20	79.016	60.027	0.552	7.612	13
Conv	entional polymerization (with mechanical stirring)					
1	5	90.557	68.066	0.657	7.004	16
2	10	111.525	85.549	0.705	7.222	17
3	15	115.578	92.026	0.754	7.254	18
4	20	75.055	73.022	0.613	7.102	15

Table S3. Effect of MMA concentration on particle size, PDI, conversion, N_P and N of the particles. Other conditions are same as Fig. 1.

Run	Acoustic amplitude (%)	Energy input (kJ)	Actual power dissipated (P, W) (measured	Power input per unit volume (kW/m ³)	Efficiency (%)	Partic (n DLS	cle size m) TEM	Polydispersity index	$\frac{N_p \times 10^{18}}{10^{18}}$	N	Conversion (%)
1	30	23.811	22.112	497.944	9.212	220.544	182.077	0.981	0.922	10	67.055
2	40	36.215	31.433	751.552	13.111	130.532	103.036	0.745	3.963	22	77.112
3	50	53.522	45.543	1136.841	18.967	79.511	60.044	0.553	7.632	13	91.233
4	65	67.717	60.022	1413.514	25.055	120.043	83.052	0.752	6.251	20	85.355
5	70	77.118	65.054	1607.504	27.183	105.022	75.513	0.663	6.573	19	81.088

Table S4. Effect of acoustic amplitude on particle size, PDI, conversion, N_P and N of nPMMA_{SP} particles.

Run	Wt. % biosurfactant	Particle	size (nm)	Polydispersity index	$N \times 1018$	N	
	(of MMA)	DLS	TEM		$I_{v_p} \times I0^{-1}$	1	
Sonochemical emulsion polymerization							
1	1.0	120.077	85.027	0.704	5.544	14	
2	2.0	90.022	67.512	0.632	6.751	14	
3	3.0	110.037	82.044	0.734	6.613	13	
4	4.0	85.054	60.036	0.572	7.577	14	
Conve	entional polymeriz	zation (with	mechanical s	tirring)			
1	1.0	120.022	85.082	0.791	6.233	17	
2	2.0	90.016	67.555	0.651	7.264	15	
3	3.0	110.052	82.023	0.762	7.172	18	
4	4.0	85.073	70.516	0.513	6.735	14	

Table S5. Effect of surfactin concentration on particle size, PDI, conversion, N_P and N of theparticles. Other conditions are same as Fig. 1.

Model	Parameters	C0 ²⁺	Zn ²⁺	Ni ²⁺	Cr ³⁺
Pseudo-first-	k_1 (min ⁻¹)	0.038	0.045	0.044	0.032
order					
	$q_{e,\text{calc}} (\text{mg g}^{-1})$	30.155	28.463	27.434	34.141
	R^2	0.943	0.947	0.935	0.953
	RMSE	0.031	0.024	8.652	0.814
	ERRSQ	0.242	0.173	63.303	6.431
Pseudo-	k_2 (g mg ⁻¹ min ⁻¹)	0.624	0.914	0.137	0.532
second-					
order					
	$q_{e,\text{calc}} (\text{mg g}^{-1})$	34.656	34.022	31.552	44.088
	R^2	0.998	0.999	0.999	0.994
	RMSE	0.016	0.003	0.812	0.748
	ERRSQ	0.117	0.034	6.455	6.582
Elovich	α (mg g ⁻¹ min ⁻¹)	5.69E + 24	1.66E + 28	68.4162	3314.526
	β (g mg ⁻¹)	28.572	27.863	6.983	27.114
	R^2	0.932	0.956	0.986	0.991
	RMSE	0.085	0.039	6.372	6.831
	ERRSQ	0.689	0.477	8.105	6.214
Intraparticle	$k_d ({\rm mg g^{-1} min^{-0.5}})$	0.005	0.008	0.037	0.014
diffusion					
	$C (\operatorname{mg} g^{-1})$	30.683	32.111	30.473	43.572
	R^2	0.974	0.982	0.955	0.962
	RMSE	0.027	0.082	3.178	5.166
	ERRSQ	0.587	0.325	8.144	6.024

Table S6. Kinetic model parameters and error function data for the metal ions sorption onto

 nPMMA_{SP} particles.

Isotherms	Parameters	C0 ²⁺	Zn ²⁺	Ni ²⁺	Cr ³⁺
Langmuir	$Q_0 (\mathrm{mg \ g}^{-1})$	24.573	25.857	27.843	36.479
	$K_L (1 \text{ mg}^{-1})$	0.044	0.031	0.038	0.042
	R^2	0.904	0.895	0.937	0.983
	RMSE	0.066	0.012	0.568	0.552
	ERRSQ	0.311	0.432	3.558	2.637
Freundlich	K_F	7.471	5.213	4.332	4.884
	1/ <i>n</i>	0.532	0.441	0.383	0.414
	R^2	0.927	0.958	0.962	0.902
	RMSE	0.088	0.853	1.274	1.548
	ERRSQ	10.889	2.442	3.769	2.551
Temkin	b_T	9.664	8.892	6.432	9.221
	A_T (l g ⁻¹)	1.183	2.122	0.443	0.522
	R^2	0.933	0.944	0.921	0.922
	RMSE	0.042	0.017	0.441	0.502
	ERRSQ	0.818	0.779	1.764	3.374
Redlich-	K_R (1 g ⁻¹)	0.781	1.374	4.733	5.662
Peterson					
	$a_R (\mathrm{mg}^{-1})$	0.055	0.132	0.035	0.042
	g	10.221	0.834	0.942	0.785
	R^2	0.954	0.955	0.962	0.944
	RMSE	0.033	0.021	0.034	0.104
	ERRSQ	0.219	0.422	1.215	1.593
Sips	K_{S} (1 g ⁻¹)	0.042	0.081	0.031	0.044
	$Q_S (\text{mg g}^{-1})$	31.152	30.528	29.471	40.143
	n_S	0.943	0.052	1.232	1.621
	R^2	0.977	0.953	0.951	0.962
	RMSE	0.037	0.088	0.044	0.492
	ERRSQ	0.204	0.394	1.032	1.042

Table S7. Isotherm parameters and error deviation data for the adsorption of Co^{2+} , Zn^{2+} , Ni^{2+} and Cr^{3+} onto nPMMA_{SP}.

Model parameters	Co ²⁺ retention capacity				
		(mg g ⁻¹)			
	-20%	+20%			
Langmuir					
$Q_0 (\mathrm{mg}~\mathrm{g}^{-1})$	30.448	30.977			
$K_L ({ m l}{ m mg}^{-1})$	30.545	30.757			
Freundlich					
K_F	30.656	30.757			
п	30.541	30.855			
Temkin					
b_T	33.785	31.583			
A_T (l g ⁻¹)	32.882	31.555			
Redlich-Peterson					
K_R (l g ⁻¹)	31.782	31.733			
$a_R (\mathrm{mg}^{-1})$	30.557	30.463			
g	32.188	32.056			
Sips					
K_{S} (1 g ⁻¹)	30.555	30.146			
$Q_S (\mathrm{mg \ g^{-1}})$	30.505	30.478			
n_S	31.035	30.862			
Pseudo-first-order					
k_1	30.066	30.212			
q_e	30.882	31.044			
Pseudo-second-order					
k_2	30.062	30.015			
q_e	30.112	30.026			
Elovich					
α	33.565	31.511			
β	32.805	31.152			
Intraparticle diffusion					
k_d	32.647	31.505			
С	31.893	31.051			

Table S8. Parametric sensitivity of the model parameters for Co^{2+} .

Metal ions	ΔH^{o} (kJ mol ⁻¹)	ΔS ^o (J mol ⁻¹ K ⁻¹)	ΔG^{o} (kJ mol ⁻¹)			
			303 K	313 K	323 K	
C0 ²⁺	-18.966	-43.554	-3.556	-3.462	-2.401	
Zn ²⁺	-8.932	-33.442	-0.205	-0.202	-0.183	
Ni ²⁺	-10.882	-34.823	0.321	0.308	0.253	
Cr ³⁺	-13.185	-38.171	0.781	0.713	0.582	

Table S9. Thermodynamic parameters for the metal ions sorption onto nPMMA_{SP}.