Supplementary information

Comparative Structure Activity Relationship for Heterogeneous Phosphatase-like Catalytic Activities of One-Dimensional Cu(II) Coordination Polymers

Navid Hussain,^a Pooja Joshi,^b Shah Raj Ali^b and Vimal K. Bhardwaj^{*, a}

^aDepartment of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India.

^bDepartment of Chemistry, D.S.B. Campus, Kumaun University, Nainital, Uttarakhand, 263002, India

S. No.	Figure No.	Content	Page No.
1	Figure S1	Absorption spectra for the transesterification of HPNP for complex 2 and 3	2
2	Figure S2	31 P NMR of HPNP on addition of complex 1	3
3	Figure S3	Time dependent ³¹ P NMR spectra for HPNP hydrolysis by complex 1	3
4	Figure S4	Dependence of rate of reaction on substrate concentration for complex 3	4
5	Figure S5	Powder X –ray diffraction pattern of 1-3 before and after catalytic experiments	4
6	Figure S6	Reusability of complex 3 for repeated HPNP phosphate ester bond cleavage experiments	5
7	Table S1	Comparative activities from reported complexes	5

Table of Contents

Fig. S1 Absorption spectra for the transesterification of HPNP (100 μ M) in the absence and presence of (a) complex **2** and (b) complex **3** (50 μ M) in 10% MeOH recorded at an interval of 5 minutes at 30°C.

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 f1 (ppm)

Fig. S2 ³¹P NMR of (a) substrate (HPNP), (b) synthesised cyclic phosphate (glycero-1,2-cyclic phosphate) and (c) substrate- catalyst reaction mixture in $D_2O/DMSO-d_6$ mixture (70:30).

Fig. S3. Time dependent ³¹P NMR spectra for HPNP hydrolysis by complex **1**, in D₂O/DMSO d_6 mixture (70:30), [HPNP]= 0.1 mM) and [Complex] = 0.25 mM.

Fig. S4 Dependence of rate of reaction on substrate concentration (50-500 μ M) for complex 3 (50 μ M) at 30 °C in 10% MeOH.

Fig. S5PXD patterns of (a) **1** and (b) **3** before catalytic experiments (black coloured) and after third cycle of catalytic experiments (blue coloured)

Fig. S6 Reusability of complex 3 for repeated HPNP phosphate ester bond cleavage experiments.

Table S1 Phosphotase like activities from reported complexes

Complex	Substrate	Conditions	K _{cat} (s⁻¹)	Reference
[Ni ₂ L(H ₂ O) ₄]4H ₂ O·2ClO ₄	4-NPP	acetonitrile-water	3.5 × 10 ⁻⁴	\$1
		(2.5% (v/v), 25° C		
[Zn(bpy)Cl ₂]	BNPP	water, 25 °C	5.7× 10 ⁻⁷	S2
[7n_(L_)-(U-O-CMe)_(MeCN)_][PE_]	HPNP	MeOH-H2O (33%,	3.44× 10 ⁻⁴	\$3
		v/v), 30° C		
[Zn ₂ (L)(H ₂ O) ₂]	3',5-UpU	water, 25 °C	2.8 × 10 ⁻⁵	S4
	BDNPP	H_2U : MECN :	3.95 × 10 ⁻³	S5
[Cu ₂ (H ₂ pat ¹)- (μ -OH)(H ₂ O) ₂]		MeOH = 50 : 45 : 5,		
		25 °C		
	HPNP	DMSO-H ₂ O (30%,	6.4 × 10 ⁻⁴	S6
Zn ₂ (bpmp)(μ-OH)(ClO ₄) ₂		v/v), 25° C		
{[Cu ₃ (L ¹)(NO ₃) ₂ (DMF)(H ₂ O)]·3(DMF)} _n	HPNP	MeOH-H₂O (10%,	9.6 × 10 ⁻³	Present work
(1)		v/v), 30° C		

References

- [S1] S. Anbu, M. Kandaswamy and B. Varghese, *Dalton Trans.*, 2010, **39**, 3823– 3832
- [S2] J. He, J. Sun, Z.-W. Maoa, L.-N. Ji and H. J. Sun, *Inorg. Biochem.* 2009, **103**, 851–858.
- [S3] H. Arora, S. K. Barman, F. Lloret and R. Mukherjee, *Inorg. Chem.* 2012, **51**, 5539–5553
- [S4] H. Linjalahti, G. Feng, J. C. Mareque-Rivas, S. Mikkola and N. H. Williams, J. Am. Chem. Soc. 2008, 130, 4232.
- [S5] P. Comba, L. R. Gahan, G. R. Hanson and M. Westphal, *Chem. Commun.* 2012, 48, 9364–9366
- [S6] K. Selmeczi, C. Michel, A. Milet, I. Gautier-Luneau, C. Philouze, J. –L. Pierre, D.
 Schnieders, A. Rompel and C. Belle, *Chem. Eur. J.* 2007, 13, 9093 9106