Electronic Supplementary Information

Catalyst-Free and Selective Synthesis of 2-Aminothiophenes and 2-Amino-4,5dihydrothiophenes from 4-Thiazolidinones in Water

Fanxun Zeng ^a, Pengjian Liu ^a, Xusheng Shao ^a, Zhong Li ^{a, b}, Xiaoyong Xu * ^{a, b}

^a Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China

^b Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
Fax: +86-21-64252603; Tel: +86-21-64252945
E-mail: xyxu@ecust.edu.cn

Table of Contents

General Information	1
General Procedure for the Synthesis of tert-butyl 2-cyano-2-(4-oxo-3-arylthiazolidin	-2-
ylidene)acetates (8a–8n)	2
General Procedure for the Synthesis of 2-cyano-2-(4-oxo-3-arylthiazolidin-2-ylidene)ace	etic
acid (9a–9n)	2
General Procedure for the Synthesis of 2-aminothiophenes (10a–10n)	8
General Procedure for the Synthesis of 2-amino-4,5-dihydrothiophenes (11a-11n)	.11
¹ H, ¹⁹ F and ¹³ C NMR Spectra of Compounds 10a–10n	.16
HMQC spectra of compound 11a	.30
¹ H, ¹⁹ F and ¹³ C NMR Spectra of Compounds 11a–11m	.30

General Information

Aryl isothiocyanates were obtained according to reported procedures.^[1] All other solvents and reagents were purchased directly from commercial suppliers and used as received without further purification. Melting points (m.p.) were recorded on Büchi B540 apparatus (Büchi Labortechnik AG, Flawil, Switzerland) and are uncorrected. ¹H NMR, ¹⁹F NMR and¹³C NMR spectra were recorded on Bruker AM-400 (1H at 400 MHz, 13C at 100 MHz, 19F at 376 MHz) spectrometer and HMQC spectra were recorded on Bruker AM-500 spectrometer with DMSO- d_6 as the solvent and TMS as the internal standard. Chemical shifts are reported in δ (parts per million) values. Highresolution electron mass spectra (ESI-TOF) were performed on a Micromass LC-TOF spectrometer. High Resolution Mass Spectrometry (HRMS) EI were recorded under electron impact (70 eV) condition using a MicroMass GCT CA 055 instrument. Analytical thin-layer chromatography (TLC) was carried out on precoated plates (silica gel 60 F254) and spots were visualized with ultraviolet (UV) light. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, coupling constant (Hz) and integration. X-ray diffraction was performed with a Bruker Smart 1000. Chromatographic analysis was performed using an ACQUITY UPLC-H Class system (Waters Corp., USA), equipped with BEH C18 reversed phase column with 50 mm×2.1 mm i.d. and 1.7 μm particle size, equipped with a quaternary solvent delivery system, a 48-vial autosampler (10 μL loop), and a photodiode array detector (PDA). The UPLC separations were carried out using gradient separation at a flow rate of 0.4 mL min⁻¹. The mobile phase was a mixture of MilliQ ultrapure 0.01% TFA solution (A) and acetonitrile (B). The following elution gradient totally lasted 15 min: initial mobile-phase composition, 90:10 (v/v) phase A:B; 0-8 min, linear change from 10 to 100% B; 8-10 min 100% B; 10-11 min, linear change from 100 to 10% B. The column and injection chamber were maintained at 40 and 25 °C, respectively. The sample injection volume was 3 μL and the detector was set at 220 nm for **10a** and 284 nm for **11a**.

General Procedure for the Synthesis of tert-butyl 2-cyano-2-(4-oxo-3-arylthiazolidin-2ylidene)acetates (8a–8n)^[2]

Tert-butyl cyanoacetate (10 mmol) followed by a solution of aryl isothiocyanate **5** (10 mmol) in anhydrous DMF (10 mL) were added to a cold suspension of powdered KOH (20 mmol) in dry DMF (10 mL). The mixture was stirred at room temperature for 0.5 h, then cooled again to 0°C, treated with a solution of appropriate 2-halogen acyl chloride **7** (15 mmol) in anhydrous DMF (10 mL) and stirred at room temperature overnight. The mixture was poured into ice-cold water, and the resulting precipitate was filtered off, dried, and crystallized from DCM-EtOH to give compounds **8a–8n** in yield of 68%–80%.

General Procedure for the Synthesis of 2-cyano-2-(4-oxo-3-arylthiazolidin-2-ylidene)acetic acid (9a–9n)

acid (9a–9n)

To a solution of tert-butyl acetate derivative **8** (5 mmol) in DCM (50 mL) was added a mixture of TFA (7.5 mL) and DCM (75 mL). The mixture was stirred at room temperature until the reaction was complete as indicated by TLC (typically 24 h). The solvent was evaporated under reduced pressure. The residual solid was further crystallized from DCM-MeOH to afford the compounds **9a–9n** in yield of 84%–91%.

(Z)-2-cyano-2-(4-oxo-3-phenylthiazolidin-2-ylidene)acetic acid (9a): yellow solid; yield: 88%; m.p.: 226.8–227.7 °C; ¹H NMR (400 MHz, DMSO- d_6) δ : 13.12 (s, 1H), 7.54–7.46 (m, 3H), 7.40– 7.37 (m, 2H), 4.01 (s, 2H) ppm; ¹³C NMR (100 MHz, DMSO- d_6) δ : 173.5, 171.6, 166.6, 134.9, 130.4, 129.3, 129.2, 112.6, 76.8, 32.0 ppm; HRMS (EI) calc. for C₁₂H₈N₂O₃S⁺ 260.0256, found 260.0255.

(Z)-2-cyano-2-(4-oxo-3-(p-tolyl)thiazolidin-2-ylidene)acetic acid (9b): yellow solid; yield: 87%; m.p.: 239.8–240.7 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ: 13.11 (s, 1H), 7.29 (d, *J* = 8.4 Hz, 2H), 7.24 (d, J = 8.4 Hz, 2H), 4.00 (s, 2H), 2.36 (s, 3H) ppm; ¹³C NMR (100 MHz, DMSO- d_6) δ : 173.5, 171.8, 166.6, 139.9, 132.3, 129.7, 129.0, 112.6, 76.7, 31.9, 20.9 ppm; HRMS (EI) calc. for C₁₃H₁₀N₂O₃S⁺ 274.0412, found 274.0415.

(Z)-2-cyano-2-(3-(4-methoxyphenyl)-4-oxothiazolidin-2-ylidene)acetic acid (9c): yellow solid; yield: 90%; m.p.: 243.0–243.2 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ : 13.09 (s, 1H), 7.29 (d, *J* = 8.8 Hz, 2H), 7.02 (d, *J* = 8.8 Hz, 2H), 3.99 (s, 2H), 3.80 (s, 3H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆) δ : 173.6, 172.2, 166.6, 160.5, 130.5, 127.5, 114.4, 112.8, 76.7, 55.4, 31.9 ppm; HRMS (EI) calc. for C₁₃H₁₀N₂O₄S⁺ 290.0361, found 290.0362.

(Z)-2-cyano-2-(3-(2,4-dimethoxyphenyl)-4-oxothiazolidin-2-ylidene)acetic acid (9d): yellow solid; yield: 89%; m.p.: 222.7–223.1 °C; ¹H NMR (400 MHz, DMSO- d_6) δ : 13.14 (s, 1H), 7.22 (d, J = 8.8 Hz, 1H), 6.67 (d, J = 2.8 Hz, 1H), 6.60 (dd, J = 8.8, 2.8 Hz, 1H), 4.07 (ABq, $J_{gem} = 18.4$ Hz, 2H), 3.81 (s, 3H), 3.77 (s, 3H) ppm; ¹³C NMR (100 MHz, DMSO- d_6) δ : 173.2, 171.5, 166.6, 162.4, 156.9, 131.1, 115.5, 112.6, 105.3, 98.9, 76.5, 56.0, 55.5, 31.4 ppm; HRMS (EI) calc. for C₁₄H₁₂N₂O₅S + 320.0467, found 320.0464.

(Z)-2-(3-(3-chlorophenyl)-4-oxothiazolidin-2-ylidene)-2-cyanoacetic acid (9e): yellow solid; yield: 86%; m.p.: 143.0–143.6 °C; ¹H NMR (400 MHz, DMSO- d_6) δ : 13.18 (s, 1H), 7.63–7.59 (m, 2H), 7.53 (t, J = 8.0 Hz, 1H), 7.42 (d, J = 8.0, 1H), 4.00 (ABq, J_{gem} = 18.4 Hz, 2H) ppm; ¹³C NMR (100 MHz, DMSO- d_6) δ : 173.3, 171.4, 166.4, 136.2, 133.3, 130.8, 130.5, 129.5, 128.4, 112.9, 76.7, 32.0 ppm; HRMS (EI) calc. for C₁₂H₇ClN₂O₃S + 293.9866, found 293.9861.

(Z)-2-cyano-2-(3-(2-fluorophenyl)-4-oxothiazolidin-2-ylidene)acetic acid (9f): yellowish solid;

yield: 85%; m.p.: 237.9–238.7 °C; ¹H NMR (400 MHz, DMSO- d_6) δ : 13.32 (s, 1H), 7.59 (dt, J = 15.6, 7.6 Hz, 2H), 7.42 (t, J = 8.8Hz, 1H), 7.35 (t, J = 7.6 Hz, 1H), 4.14 (ABq, $J_{gem} = 18.8$ Hz, 2H) ppm; ¹⁹F NMR (376 MHz, DMSO- d_6): δ : -122.69 – -122.75 (m) ppm; HRMS (ES-) calcd for C₁₂H₆N₂O₃FS (M-H)⁻, 277.0083; found, 277.0087.

(Z)-2-cyano-2-(3-(3-fluoro-[1,1'-biphenyl]-4-yl)-4-oxothiazolidin-2-ylidene)acetic acid (9g): yellow solid; yield: 87%; m.p.: 225.8–226.7 °C; ¹H NMR (400 MHz, DMSO- d_6) δ : 13.37 (s, 1H), 7.84–7.77 (m, 3H), 7.73–7.62 (m, 2H), 7.56–7.49 (m, 2H), 7.48–7.42 (m, 1H), 4.18 (ABq, J_{gem} = 18.4 Hz, 2H) ppm; ¹⁹F NMR (376 MHz, DMSO- d_6) δ : -121.97 – -122.04 (m) ppm; HRMS (EI) calc. for C₁₈H₁₁FN₂O₃S⁺ 354.0474, found 354.0480.

(Z)-2-cyano-2-(3-(2-nitrophenyl)-4-oxothiazolidin-2-ylidene)acetic acid (9h): yellow solid; yield: 84%; m.p.: 217.7–217.9 °C; ¹H NMR (400 MHz, DMSO- d_6) δ : 13.43 (s, 1H), 8.31 (dd, J = 8.4, 1.2 Hz, 1H), 7.96 (td, J = 7.6, 1.2 Hz, 1H), 7.88 (td, J = 8.0, 1.2 Hz, 1H), 7.83 (dd, J = 8.0, 1.2 Hz, 1H), 4.17 (ABq, J_{gem} = 18.4 Hz, 2H) ppm; ¹³C NMR (100 MHz, DMSO- d_6) δ : 173.1, 170.5, 166.1, 146.5, 135.4, 132.7, 132.4, 128.0, 125.8, 112.9, 77.3, 31.8 ppm; HRMS (EI) calc. for C₁₂H₇N₃O₅S + 305.0106, found 305.0107.

(Z)-2-cyano-2-(3-(4-cyanophenyl)-4-oxothiazolidin-2-ylidene)acetic acid (9i): yellow solid; yield: 87%; m.p.: 235.0–235.9 °C; ¹H NMR (400 MHz, DMSO- d_6) δ : 13.25 (s, 1H), 8.03 (d, J = 8.4 Hz, 2H), 7.69 (d, J = 8.4 Hz, 2H), 4.02 (s, 2H) ppm; ¹³C NMR (100 MHz, DMSO- d_6) δ : 173.2, 171.2, 166.3, 139.1, 133.4, 130.8, 118.2, 113.1, 113.0, 76.7, 32.2 ppm; HRMS (EI) calc. for C₁₃H₇N₃O₃S⁺ 285.0208, found 285.0207.

(Z)-2-cyano-2-(3-(4-nitrophenyl)-4-oxothiazolidin-2-ylidene)acetic acid (9j): white solid; yield: 84%; m.p.: 243.1–243.3 °C; ¹H NMR (400 MHz, DMSO- d_6) δ : 13.25 (s, 1H), 8.40 (d, J = 8.8 Hz, 2H), 7.78 (d, J= 8.8 Hz, 2H), 4.03 (s, 2H) ppm; ¹³C NMR (100 MHz, DMSO- d_6) δ : 173.3, 171.2, 166.3, 148.4, 140.7, 131.3, 124.5, 113.1, 76.7, 32.2 ppm; HRMS (EI) calc. for C₁₂H₇N₃O₅S + 305.0106, found 305.0103.

(Z)-2-cyano-2-(4-oxo-3,5-diphenylthiazolidin-2-ylidene)acetic acid (91): gray solid; yield: 86%; m.p.: 206.3–207.3 °C; ¹H NMR (400 MHz, DMSO- d_6) δ : 13.34 (s, 1H), 7.84 (d, J = 5.6 Hz, 1H), 7.46 (d, J = 5.6 Hz, 1H), 4.11 (ABq, $J_{gem} = 18.8$ Hz, 2H), 3.76 (s, 3H) ppm; ¹³C NMR (100 MHz, DMSO- d_6) δ : 172.8, 171.2, 166.2, 160.9, 139.2, 131.0, 129.0, 126.9, 112.3, 77.4, 52.2, 31.5 ppm; HRMS (EI) calc. for C₁₂H₈N₂O₅S₂⁺ 323.9875, found 323.9872.

(Z)-2-cyano-2-(5-methyl-4-oxo-3-phenylthiazolidin-2-ylidene)acetic acid (91): white solid; yield: 91%; m.p.: 206.5–207.0 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ : 13.17 (s, 1H), 7.54–7.39 (m, 5H), 4.25 (q, *J* = 7.2 Hz, 1H), 1.59 (d, *J* = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆) δ : 176.4, 170.0, 166.5, 135.1, 130.4, 129.4, 129.3, 129.2, 129.1, 112.65, 76.8, 40.0, 17.5 ppm; HRMS (EI) calc. for C₁₃H₁₀N₂O₃S + 274.0412, found 274.0413.

(Z)-2-cyano-2-(5-methyl-4-oxo-3-phenylthiazolidin-2-ylidene)acetic acid (9m): yellow solid; yield: 90%; m.p.: 202.3–203.3 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ : 13.36 (s, 1H), 8.34–8.30 (m, 1H), 8.00–7.84 (m, 3H), 4.46 and 4.32 (2*q, *J* = 7.2 Hz, 1H), 1.62 and 1.56 (2*d, *J* = 7.2 Hz, 3H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆) δ : 176.0, 175.9, 169.0, 168.9, 166.0, 165.9, 146.4, 146.2, 135.5, 135.4, 132.8, 132.6, 128.1, 128.0, 125.9, 125.8, 112.9, 112.8, 77.4, 77.0, 40.2, 39.9, 18.0, 17.5 ppm; HRMS (EI) calc. for C₁₃H₉N₃O₅S + 319.0263, found 319.0263.

(Z)-2-cyano-2-(4-oxo-3,5-diphenylthiazolidin-2-ylidene)acetic acid (9n): white solid; yield: 88%; m.p.: 284.1–184.8 °C; ¹H NMR (400 MHz, DMSO- d_6) δ : 13.37 (s, 1H), 7.59–7.49 (m, 7H), 7.46–7.36 (m, 3H), 5.55 (s, 1H) ppm; ¹³C NMR (100 MHz, DMSO- d_6) δ : 174.2, 169.1, 166.6, 135.4, 135.0, 130.6, 129.5, 129.4, 129.3, 129.2, 129.1, 129.0, 128.6, 112.5, 77.5, 49.2 ppm; HRMS (EI) calc. for C₁₈H₁₂N₂O₃S⁺ 336.0569, found 336.0576.

References and notes

1 (a) Khatik, G. L.; Pal, A.; Mobin, S. M.; Nair, V. A. *Tetrahedron Lett.* **2010**, 51 (28): 3654;(b) Liu, P.; Li, C.; Zhang, J.; Xu, X. *Synth. Commun.* **2013**, 43 (24): 3342.

2 Kaminskyy, D.; Gzella, A. K.; Lesyk, R. Synth. Commun. 2014, 44 (2): 231.

General Procedure for the Synthesis of 2-aminothiophenes (10a–10n)

Carboxylic acid compound **9** (0.5 mmol) was added to a solution of NaBH₄ (1 mmol) in water (2.5 mL) at 15 °C. The reaction mixture was stirred at 15 °C until the reaction was complete as determined by TLC analysis (typically 0.5–24 h). The reaction mixture was quenched with 1 M HCl, and the product precipitated was filtered. The solid was purified by silica gel column chromatography (PE : EA = 5:1) to afford the compounds **10a–10n**.

2-(phenylamino)thiophene-3-carbonitrile (10a): white solid; yield: 83%; m.p.: 125.1–125.6 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ : 9.53 (s, 1H), 7.32 (t, *J* = 7.8 Hz, 2H), 7.23 (d, *J* = 8.0 Hz, 2H), 7.10–7.06 (m, 1H), 7.00 (t, *J* = 7.2 Hz, 1H), 6.91 (dd, *J* = 5.8, 2.6 Hz, 1H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆) δ : 158.7, 142.5, 129.4, 126.2, 122.2, 117.5, 115.6, 113.7, 92.0 ppm; HRMS (EI) calc. for C₁₁H₈N₂S⁺ 200.0408, found 200.0409.

2-(*p***-tolylamino)thiophene-3-carbonitrile(10b):** red solid; yield: 68%; m.p.: 106.8–107.4 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ : 9.49 (s, 1H), 7.17–7.10 (m, 4H), 7.04 (d, *J* = 5.8 Hz, 1H), 6.82 (d, *J* = 5.8 Hz, 1H), 2.26 (s, 3H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆) δ : 159.8, 139.9, 131.7, 129.8, 126.2, 118.3, 115.8, 112.5, 90.2, 20.3 ppm; HRMS (EI) calc. for C₁₂H₁₀N₂S⁺ 214.0565, found 214.0564.

2-((4-methoxyphenyl)amino)thiophene-3-carbonitrile (10c): gray solid; yield: 79%; m.p.: 125.9–126.5 °C; ¹H NMR (400 MHz, DMSO- d_6) δ : 9.40 (s, 1H), 7.18–2.24 (m, 2H), 6.98 (d, J = 5.8 Hz, 1H), 6.95–6.89 (m, 2H), 6.70 (d, J = 5.8 Hz, 1H), 3.74 (s, 3H) ppm; ¹³C NMR (100 MHz, DMSO- d_6) δ : 161.6, 155.5, 135.5, 126.2, 121.2, 116.0, 114.6, 111.1, 87.9, 55.2 ppm; HRMS (EI) calc. for C₁₂H₁₀N₂OS⁺ 230.0514, found 230.0513.

2-((2,4-dimethoxyphenyl)amino)thiophene-3-carbonitrile (10d): gray solid; yield: 28%; m.p.: 86.7–87.1 °C; ¹H NMR (400 MHz, DMSO- d_6) δ : 8.83 (s, 1H), 7.13 (d, J = 8.8 Hz, 1H), 6.87 (d, J = 5.6 Hz, 1H), 6.66 (d, J = 2.4 Hz, 1H), 6.58–6.47 (m, 2H), 3.77 (s, 6H) ppm; ¹³C NMR (100

MHz, DMSO-*d*₆) δ: 164.4, 158.4, 154.2, 126.2, 125.7, 123.3, 116.1, 110.3, 104.7, 99.6, 85.0, 55.6, 55.3 ppm; HRMS (EI) calc. for C₁₃H₁₂N₂O₂S⁺ 260.0619, found 260.0620.

2-((3-chlorophenyl)amino)thiophene-3-carbonitrile(10e): white solid; yield: 72%; m.p.: 212.3–213.2 °C; ¹H NMR (400 MHz, DMSO- d_6) δ : 9.63 (s, 1H), 7.33 (t, J = 8.0 Hz, 1H), 7.19–7.17 (m, 1H), 7.16–7.11 (m, 2H), 7.07 (d, J = 5.6 Hz, 1H), 7.01 (d, J = 7.6, Hz, 1H) ppm; ¹³C NMR (100 MHz, DMSO- d_6) δ : 157.0, 144.4, 133.7, 131.0, 126.4, 121.3, 116.3, 115.9, 115.1, 94.6 ppm; HRMS (EI) calc. for C₁₁H₇³⁵ClN₂⁺ 234.0018, found 234.0019; calc. for C₁₁H₇³⁷ClN₂⁺ 235.9989, found 235.9996.

2-((2-fluorophenyl)amino)thiophene-3-carbonitrile (10f): white solid; yield: 82%; m.p.: 73.9–74.3 °C; ¹H NMR (400 MHz, DMSO- d_6) δ : 9.26 (s, 1H), 7.32–7.20 (m, 2H), 7.16 (t, J = 7.0 Hz, 1H), 7.13–7.06 (m, 2H), 6.97 (d, J = 5.6 Hz, 1H) ppm; ¹⁹F NMR (376 MHz, DMSO- d_6) δ : -125.37 – -125.45 (m) ppm; HRMS (EI) calc. for C₁₁H₇FN₂S⁺ 218.0314, found 218.0313.

2-((3-fluoro-[1,1'-biphenyl]-4-yl)amino)thiophene-3-carbonitrile (10g): White solid; yield: 80%; m.p.: 122.5–123.0 °C; ¹H NMR (400 MHz, DMSO- d_6) δ : 9.38 (s, 1H), 7.70 (d, J = 7.2 Hz, 2H), 7.65 (dd, J = 12.8, 1.6 Hz, 1H), 7.54–7.42 (m, 3H), 7.36 (t, J = 7.4 Hz, 1H), 7.30 (t, J = 8.6 Hz, 1H), 7.13 (d, J = 5.8 Hz, 1H), 7.03 (d, J = 5.8 Hz, 1H) ppm; ¹⁹F NMR (376 MHz, DMSO- d_6) δ : -125.11 (dd, J = 12.2, 9.2 Hz) ppm; HRMS (EI) calc. for C₁₇H₁₁FN₂S⁺ 294.0627, found 294.0626.

2-((2-nitrophenyl)amino)thiophene-3-carbonitrile (10h): Red solid; yield: 39%; m.p.: 133.4–134.2 °C; ¹H NMR (400 MHz, DMSO- d_6) δ : 9.74 (s, 1H), 8.15 (dd, J = 8.4, 1.2 Hz, 1H), 7.68–7.60 (m, 1H), 7.48 (d, J = 5.8 Hz, 1H), 7.34 (d, J = 5.8 Hz, 1H), 7.12–7.06 (m, 2H) ppm; ¹³C NMR (100 MHz, DMSO- d_6) δ : 153.6, 140.2, 136.2, 135.2, 126.8, 126.2, 122.4, 120.5, 117.8, 114.2, 102.9 ppm; HRMS (EI) calc. for C₁₁H₇N₃O₂S⁺ 245.0259, found 245.0261.

2-((4-cyanophenyl)amino)thiophene-3-carbonitrile (10i): White solid; yield: 61%; m.p.: 193.1– 193.8 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ : 9.92 (s, 1H), 7.72 (d, *J* = 8.4 Hz, 2H), 7.28 (d, *J* = 5.8 Hz, 1H), 7.25 (d, *J* = 5.8 Hz, 1H), 7.20 (d, *J* = 8.4 Hz, 2H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆) δ : 154.6, 147.2, 133.8, 126.7, 119.3, 118.7, 115.6, 114.7, 102.1, 98.3 ppm; HRMS (EI) calc. for C₁₂H₇N₃S⁺ 225.0361, found 225.0363.

2-((4-nitrophenyl)amino)thiophene-3-carbonitrile (10j): Yellow solid; yield: 77%; m.p.: 212.3–213.2 °C; ¹H NMR (400 MHz, DMSO- d_6) δ : 10.16 (s, 1H), 8.19 (d, J = 9.2 Hz, 2H), 7.38 (d, J = 5.8 Hz, 1H), 7.30 (d, J = 5.8 Hz, 1H), 7.19 (d, J = 9.2 Hz, 2H) ppm; ¹³C NMR (100 MHz, DMSO- d_6) δ : 153.8, 149.5, 140.0, 126.8, 126.0, 120.1, 114.7, 114.5, 99.8 ppm; HRMS (EI) calc. for C₁₁H₇N₃O₂S⁺ 245.0259, found 245.0258.

methyl 2-((3-cyanothiophen-2-yl)amino)thiophene-3-carboxylate (10k): Yellow solid; yield: 36%; m.p.: 192.2–193.1 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ: 10.67 (s, 1H), 7.29–7.25 (m, 2H), 7.19 (d, J = 5.6 Hz, 1H), 6.97 (d, J = 5.6 Hz, 1H), 3.84 (s, 3H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆) δ: 164.7, 155.1, 154.9, 126.2, 125.6, 117.5, 114.3, 112.8, 110.2, 94.7, 51.7 ppm; HRMS (EI) calc. for C₁₁H₈N₂O₂S₂⁺ 264.0027, found 263.9998.

5-methyl-2-(phenylamino)thiophene-3-carbonitrile (101): White solid; yield: 45%; m.p.: 110.1–110.4 °C; ¹H NMR (400 MHz, DMSO- d_6) & 9.38 (s, 1H), 7.29 (t, J = 7.8 Hz, 2H), 7.16 (d, J = 7.8 Hz, 2H), 6.96 (t, J = 7.4 Hz, 1H), 6.77 (s, 1H), 2.31 (s, 3H) ppm; ¹³C NMR (100 MHz, DMSO- d_6) & 156.5, 142.9, 129.3, 127.2, 123.0, 121.7, 116.9, 115.5, 92.4, 14.8 ppm; HRMS (EI) calc. for C₁₂H₁₀N₂S⁺ 214.0565, found 214.0566.

5-methyl-2-((2-nitrophenyl)amino)thiophene-3-carbonitrile (10m): Yellow solid; yield: 81%; m.p.: 112.5–113.0 °C;¹H NMR (400 MHz, DMSO- d_6) δ : 9.65 (s, 1H), 8.15 (dd, J = 8.6, 1.4 Hz, 1H), 7.65–7.58 (m, 1H), 7.08–7.01 (m, 3H), 2.44 (s, 3H) ppm; ¹³C NMR (100 MHz, DMSO- d_6) δ :150.8, 140.8, 136.2, 136.1, 134.7, 126.1, 124.1, 120.0, 117.3, 114.1, 103.7, 15.1 ppm; HRMS (EI) calc. for C₁₂H₉N₃O₂S⁺ 259.0415, found 259.0419.

5-phenyl-2-(phenylamino)thiophene-3-carbonitrile (10n): White solid; yield: 45%; m.p.: 194.3–195.1 °C; ¹H NMR (400 MHz, DMSO- d_6) δ : 9.80 (s, 1H), 7.57 (s, 1H), 7.55 (s, 2H), 7.42–7.23 (m, 7H), 7.06 (t, J = 6.8 Hz, 1H) ppm; ¹³C NMR (100 MHz, DMSO- d_6) δ : 158.0, 142.0, 132.5, 129.5, 129.1, 128.4, 127.4, 124.7, 122.9, 122.2, 118.2, 115.4, 91.8 ppm; HRMS (EI) calc. for C₁₇H₁₂N₂S + 276.0721, found 276.0722.

General Procedure for the Synthesis of 2-amino-4,5-dihydrothiophenes (11a-11n)

Carboxylic acid compound 9 (0.5 mmol) was added to a solution of KBH₄ (5 mmol) in water (5 mL) at 60 °C. The reaction mixture was stirred at 60 °C for 0.5 h. The reaction mixture was cooled to room temperature and quenched with 1 M HCl. The aqueous layer was extracted with EtOAc (3×2 mL). The combined organic phases were washed once with brine, dried with anhydrous Na₂SO₄, vacuum-filtered, and concentrated under reduced pressure. the residue was purified by silica gel column chromatography (PE : EA = 3:1) to afford the corresponding 2-amino-4,5-dihydrothiophenes **11a–11m**.

2-(phenylamino)-4,5-dihydrothiophene-3-carbonitrile (11a): White solid; yield: 81%; m.p.: 126.8–127.5 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ : 9.46 and 4.54–4.50 (s and m, 1H, NH and CN-CH), 7.39 and 7.29 (2*t, *J* = 7.8 Hz, 2H, Ar H-3,5), 7.16 and 7.04 (2*t, *J* = 7.2 Hz, 1H, Ar H-4), 7.14 and 6.93 (2*d, *J* = 7.6 Hz, 2H, Ar H-2,6), 3.35–3.31 and 3.28 (m and t, *J* = 8.0 Hz, 2H, S-CH₂), 2.89, 2.70–2.64 and 2.37–2.27 (t, *J* = 8.0 Hz, 2*m, 2H) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆) δ : 168.5, 160.7, 150.9, 141.0, 129.3, 128.8, 124.9, 123.4, 120.8, 119.5, 118.0, 117.7, 73.1, 40.4, 33.4, 31.7, 31.1, 30.8 ppm; HRMS (EI) calc. for C₁₁H₁₀N₂S⁺ 202.0565, found 202.0566.

2-(p-tolylamino)-4,5-dihydrothiophene-3-carbonitrile (11b): Pink solid; yield: 80%; m.p.: 110.7–111.9 °C; ¹H NMR (400 MHz, DMSO- d_6) δ : 9.37 and 4.52–4.47 (s and m, 1H, NH and CN-CH), 7.19 and 7.10 (2*d, J = 8.4 Hz, 2H, Ar H-2,6), 7.04 and 6.84 (2*d, J = 8.4 Hz, 2H, Ar H-3,5), 3.34–3.29 and 3.25 (m and t, J = 8.0 Hz, 2H, S-CH₂), 2.88, 2.68–2.63 and 2.35–2.31 (t, J = 8.0 Hz, 2*m, 2H, CH₂), 2.29 and 2.25 (2*s, 3H, CH₃) ppm; ¹³C NMR (100 MHz, DMSO- d_6) δ :

167.7, 161.2, 148.2, 138.5, 134.0, 132.8, 129.7, 129.2, 121.4, 119.6, 118.1, 117.9, 71.5, 40.4, 33.4, 31.6, 31.0, 30.7, 20.5, 20.4 ppm; HRMS (EI) calc. for C₁₂H₁₂N₂S⁺ 216.0721, found 216.0723.

2-((4-methoxyphenyl)amino)-4,5-dihydrothiophene-3-carbonitrile (11c): Pink solid; yield: 75%; m.p.: 105.4–106.1 °C; ¹H NMR (400 MHz, DMSO- d_6) δ : 9.27 and 4.51–4.45 (s and m, 1H, NH and CN-CH), 7.09 and 6.95 (d, J = 8.4 Hz, s, 2H, Ar H-2,6), 6.95 and 6.87 (d, J = 8.4 Hz, 2H, Ar H-3,5), 3.75 and 3.73 (2*s, 3H, OCH₃), 3.34–3.30 and 3.22 (m and t, J = 7.6 Hz, 2H, S-CH₂), 2.87, 2.68–2.61 and 2.34–2.23 (t, J = 7.6 Hz, 2*m, 2H, CH₂) ppm; ¹³C NMR (100 MHz, DMSO- d_6) δ : 166.7, 162.2, 156.6, 156.2, 143.5, 134.0, 124.0, 121.2, 118.1, 114.4, 113.9, 69.5, 55.2, 40.5, 33.5, 31.7, 31.0, 30.5 ppm; HRMS (EI) calc. for C₁₂H₁₂N₂OS + 232.0670, found 232.0669.

2-((2,4-dimethoxyphenyl)amino)-4,5-dihydrothiophene-3-carbonitrile (11d): Yellow oil; yield: 68%; ¹H NMR (400 MHz, DMSO- d_6) δ : 8.57 and 4.50–4.44 (s and m, 1H, NH and CN-CH), 7.02 and 6.75 (2*d, J = 8.4 Hz, 1H, Ar H-6), 6.61 and 6.58 (2*d, J = 2.0 Hz, 1H, Ar H-3), 6.50 and 6.45 (2*dd, J = 8.4, 2.4 Hz, 1H, Ar H-5), 3.78 and 3.75 (2*s, 3H, OCH₃), 3.75 and 3.73 (2*s, 3H, OCH₃), 3.31–3.26 and 3.16 (m and t, J = 8.0 Hz, 2H, S-CH₂), 2.85, 2.67–2.59and 2.35–2.25 (t, J = 8.0 Hz, 2*m, 2H, CH₂) ppm; ¹³C NMR (100 MHz, DMSO- d_6) δ : 168.1, 163.7, 158.9, 157.6, 155.3, 150.7, 133.5, 127.9, 122.3, 119.8, 118.2, 118.1, 104.5, 104.1, 99.7, 99.0, 66.4, 55.6, 55.5, 55.3, 55.2, 40.0, 34.2, 31.3, 31.0, 30.7 ppm; HRMS (EI) calc. for C₁₃H₁₄N₂O₂S ⁺ 262.0776, found 262.0777.

2-((3-chlorophenyl)amino)-4,5-dihydrothiophene-3-carbonitrile (11e): Colourless oil; yield: 78%; ¹H NMR (400 MHz, DMSO- d_6) δ : 9.61 and 4.57–4.51 (s and m, 1H, NH and CN-CH), 7.42 and 7.31 (2*t, J = 8.0 Hz, 1H, Ar H-5), 7.23 and 7.11 (2*dd, J = 8.0, 1.2 Hz, 1H, Ar H-4), 7.18 and 6.99 (2*t, J = 1.2 Hz, 1H, Ar H-2), 7.07 and 6.91 (2*dd, J = 8.0, 1.2 Hz, 1H, Ar H-6), 3.39–3.34 and 3.32 (m and t, J = 8.0 Hz, 2H, S-CH₂), 2.92, 2.74–2.66 and 2.40–2.29 (t, J = 8.0 Hz, 2*m, 2H, CH₂) ppm; ¹³C NMR (100 MHz, DMSO- d_6) δ : 170.6, 159.6, 152.4, 142.6, 133.6, 133.1, 131.1, 130.4, 124.7, 122.6, 119.7, 119.3, 118.6, 118.4, 117.8, 117.3, 75.8, 40.4, 33.3, 31.9, 31.2, 30.9 ppm; HRMS (EI) calc. for C₁₁H₉³⁵ClN₂S + 236.0175, found 236.0173; calc. for C₁₁H₉³⁷ClN₂S+ 238.0145, found 238.0144.

2-((2-fluorophenyl)amino)-4,5-dihydrothiophene-3-carbonitrile (11f): White solid; yield: 82%; m.p.: 132.8–133.7 °C; ¹H NMR (400 MHz, DMSO- d_6) δ : 9.23 and 4.64–4.59 (s and m, 1H, NH and CN-CH), 7.31–7.13 and 7.03–6.98 (2*m, 4H, Ar H), 3.39–3.34 and 3.25 (m and t, J = 8.0 Hz, 2H, S-CH₂), 2.90, 2.75–2.67 and 2.42–2.31 (t, J = 7.9 Hz, 2*m, 2H, CH₂) ppm; ¹⁹F NMR (376 MHz, DMSO- d_6) δ : -122.89 – -122.96 (m), -126.02 – -126.09 (m) ppm; HRMS (EI) calc. for C₁₁H₉FN₂S⁺220.0470, found 220.0471.

2-((3-fluoro-[1,1'-biphenyl]-4-yl)amino)-4,5-dihydrothiophene-3-carbonitrile (11g): Yellowish solid; yield: 75%; m.p.:95.0–95.5 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ : 9.32 and 4.68–4.62 (s and m, 1H, NH and CN-CH), 7.71 (t, *J* = 6.8 Hz, 2H, Ar H), 7.66–7.50 (m, 2H, Ar H), 7.47 (t, *J* = 7.2 Hz, 2H, Ar H), 7.38 (t, *J* = 7.2 Hz, 1H, Ar H), 7.33 and 7.11 (2*t, *J* = 8.4 Hz, 1H, Ar H), 3.41–3.38 and 3.28 (m and t, *J* = 8.0 Hz, 2H, S-CH₂), 2.93, 2.74–2.72 and 2.45–2.34 (t, *J* = 7.6 Hz, 2*m, 2H, CH₂) ppm; ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ : -122.38 – -122.44 (m), -125.15 – -125.22 (m) ppm; HRMS (EI) calc. for C₁₇H₁₃FN₂S⁺ 296.0783, found 296.0784.

2-((2-nitrophenyl)amino)-4,5-dihydrothiophene-3-carbonitrile (11h): Pink oil; yield: 76%; m.p.: 91.6–92.4 °C; ¹H NMR (400 MHz, DMSO- d_6) δ : 9.64 and 4.65–4.60 (s and m, 1H, NH and CN-CH), 8.08–8.03 (m, 1H, Ar H-3), 7.77–7.68 (m, 1H, Ar H-5), 7.47 and 7.12 (2*d, J = 7.6 Hz, 1H, Ar H-6), 7.39 and 7.29 (2*t, J = 7.6 Hz, 1H, Ar H-4), 3.42–3.38 and 3.34 (m and t, J = 8.0 Hz, 2H, S-CH₂), 2.94, 2.76–2.71 and 2.43–2.32 (t, J = 8.0 Hz, 2*m, 2H, CH₂) ppm; ¹³C NMR (100 MHz, DMSO- d_6) δ : 172.4, 159.5, 144.7, 140.2, 139.8, 135.5, 135.0, 134.6, 125.6, 125.5, 125.0, 124.4, 124.2, 121.4, 117.3, 116.6, 78.6, 40.4, 33.5, 32.3, 31.5, 31.4 ppm; HRMS (EI) calc. for C₁₁H₉N₃O₂S⁺ 247.0415, found 247.0414.

2-((4-cyanophenyl)amino)-4,5-dihydrothiophene-3-carbonitrile (11i): White solid; yield: 78%; m.p.: 142.3–143.0 °C; ¹H NMR (400 MHz, DMSO- d_6) δ : 9.92 and 4.62–4.57 (s and m, 1H, NH

and CN-CH), 7.87 and 7.73 (2*d, J = 8.0 Hz, 2H, Ar H-3,5), 7.24 and 7.10 (2*d, J = 8.0 Hz, 2H, Ar H-2,6), 3.37 (t, J = 7.6 Hz, 2H, S-CH₂), 2.95, 2.75–2.68 and 2.42–2.31 (t, J = 7.6 Hz, 2*m, 2H, CH₂) ppm; ¹³C NMR (100 MHz, DMSO- d_6) δ : 171.3, 158.2, 154.9, 154.6, 145.4, 133.8, 133.2, 120.5, 119.1, 118.8, 116.7, 115.6, 107.2, 103.5, 80.3, 40.5, 33.3, 32.1, 31.4, 31.0 ppm; HRMS (EI) calc. for C₁₂H₉N₃S⁺ 227.0517, found 227.0516.

2-((4-nitrophenyl)amino)-4,5-dihydrothiophene-3-carbonitrile (11j): Yellow solid; yield: 61%; m.p.: 154.1–154.8 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ : 10.16 and 4.67–4.61 (s and m, 1H, NH and CN-CH), 8.28 and 8.18 (2*d, *J* = 8.8 Hz, 2H, Ar H-3,5), 7.27 and 7.16 (2*d, *J* = 8.8 Hz, 2H, Ar H-2,6), 3.41 (t, *J* = 8.0 Hz, 2H, S-CH₂), 2.98, 2.77–2.71 and 2.44–2.33 (t, *J* = 8.0 Hz, 2*m, 2H, CH₂) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆) δ : 157.8, 153.8, 147.5, 144.1, 141.0, 125.9, 125.4, 125.2, 120.5, 117.9, 116.5, 114.7, 82.2, 40.6, 33.3, 32.3, 31.5, 31.0 ppm; HRMS (EI) calc. for C₁₁H₉N₃O₂S⁺ 247.0415, found 247.0414.

methyl 2-((3-cyano-4,5-dihydrothiophen-2-yl)amino)thiophene-3-carboxylate (11k): Yellow solid; yield: 66%; m.p.: 130.5–131.3 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ : 10.53 and 4.67–4.62 (s and m, 1H, NH and CN-CH), 7.37 and 7.16 (2*d, *J* = 5.6 Hz, 1H, Ar H-5), 7.28 and 7.02 (2*d, *J* = 5.6 Hz, 1H, Ar H-4), 3.82 and 3.74 (2*s, 3H, CH₃), 3.50–3.43 (m, 2H, S-CH₂), 2.94, 2.75–2.68 and 2.42–2.32 (t, *J* = 8.0 Hz, 2*m, 2H, CH₂) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆) δ : 172.9, 164.5, 162.2, 158.4, 156.9, 152.5, 127.5, 125.3, 120.2, 119.9, 117.5, 116.4, 115.8, 113.4, 76.9, 51.9, 51.5, 41.1, 33.3, 33.1, 32.5, 31.1 ppm; HRMS (EI) calc. for C₁₁H₁₀N₂O₂S₂+ 266.0184, found 266.0185.

5-methyl-2-(phenylamino)-4,5-dihydrothiophene-3-carbonitrile (111): Yellowish oil; yield: 75%; ¹H NMR (400 MHz, DMSO-*d*₆) δ : 9.43, 4.77–4.73 and 4.65–4.59 (s and 2*m, 1H, NH and CN-CH), 7.38 and 7.29 (2*t, *J* = 8.0 Hz, 2H, Ar H-3,5), 7.18–7.12 and 6.99–6.97 (2*m, 2H, Ar H-2,6), 7.16 and 7.04 (2*t, *J* = 7.6 Hz, 1H, Ar H-4), 4.02–3.96 and 3.91–3.83 (2*m, 1H, S-CH), 3.10–3.04, 2.81–2.74, 2.71–2.66, 2.60–2.53, 2.33–2.27, 2.19–2.11 and 2.05–1.95 (7*m, 2H, CH₂), 1.40–1.35 (m, 3H, CH₃) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆) δ : 168.0, 159.8, 150.8, 150.7, 141.0, 129.3, 128.7, 124.9, 124.8, 123.3, 120.8, 119.6, 119.5, 118.2, 117.9, 117.8, 77.7, 71.9, 43.6, 43.5, 43.2, 41.2, 41.1, 39.7, 38.7, 37.4, 21.5, 21.3, 19.8, 19.5 ppm; HRMS (EI) calc. for C₁₂H₁₂N₂S⁺ 216.0721, found 216.0723.

5-methyl-2-((2-nitrophenyl)amino)-4,5-dihydrothiophene-3-carbonitrile (11m): Yellow soild; yield: 75%; m.p.: 73.8–74.5 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ: 9.64, 4.88–4.84 and 4.76–4.71 (s and 2*m, 1H, NH and CN-CH), 8.08–8.02 (m, 1H, Ar H), 7.76–7.67 (m, 1H, Ar H), 7.46–7.37 (m, 1H, Ar H), 7.29 and 7.11 (2*t, J = 8.0 Hz, 1H, Ar H), 4.11–4.04 and 4.01–3.90 (2*m, 1H, S-CH), 3.15–3.09, 2.88–2.81, 2.65–2.57, 2.42–2.35 and 2.12–1.02 (5*m, 2H, CH₂), 1.41 and 1.38 (2*d, J = 6.8 Hz, 3H, CH₃) ppm; ¹³C NMR (100 MHz, DMSO-*d*₆) δ: 171.9, 171.8, 158.7, 144.6, 140.2, 139.9, 139.7, 135.6, 134.9, 134.6, 125.7, 125.5, 125.0, 124.3, 124.1, 121.5, 121.4, 117.5, 117.3, 116.8, 77.5, 44.6, 43.8, 41.1, 38.1, 21.4, 21.2, 19.7 ppm; HRMS (EI) calc. for C₁₂H₁₁N₃O₂S⁺ 261.0572, found 261.0573.

¹³C NMR spectrum of compound **10a**

¹³C NMR spectrum of compound **10b**

 $^{13}\mathrm{C}$ NMR spectrum of compound 10c

¹³C NMR spectrum of compound **10d**

¹³C NMR spectrum of compound **10e**

¹⁹F NMR spectrum of compound **10f**

 $^{19}\mathrm{F}$ NMR spectrum of compound $\mathbf{10g}$

¹³C NMR spectrum of compound **10h**

¹³C NMR spectrum of compound **10i**

¹³C NMR spectrum of compound **10j**

¹³C NMR spectrum of compound **10k**

¹³C NMR spectrum of compound **10**

¹³C NMR spectrum of compound **10n**

¹H NMR spectrum of compound **11a**

¹H NMR spectrum of compound **11b**

¹H NMR spectrum of compound **11c**

¹H NMR spectrum of compound **11d**

¹H NMR spectrum of compound **11e**

¹H NMR spectrum of compound **11f**

¹H NMR spectrum of compound **11g**

¹H NMR spectrum of compound **11h**

¹H NMR spectrum of compound **11i**

¹H NMR spectrum of compound **11j**

¹H NMR spectrum of compound **11k**

¹H NMR spectrum of compound **111**

¹H NMR spectrum of compound **11m**

