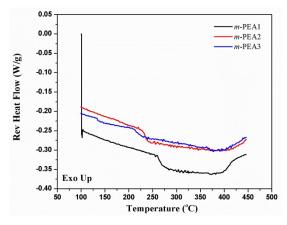
Supporting information


Thermal transition behaviors, solubility, and mechanical properties of wholly aromatic para-, meta-poly(ether-amide)s: effect on numbers of para-aryl ether linkages

Wen-Qiang Zhang, Xiu-Li Wang*, Gui-Cheng Liu, Li Chen, Yu-Zhong Wang*

Center for Degradable and Flame-Retardant Polymeric Materials, College of Chemistry, State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Sichuan University, Chengdu 610064, China. Tel. & Fax:+86-28-85410755. E-mail address: xiuliwang1@163.com (X. L. Wang) and yzwang@scu.edu.cn (Y. Z. Wang)

Figure S1. FTIR spectra of PEA1 and PEA4.

Figure S2. MDSC Rev. Heating curve of *m*-PEA1, *m*-PEA2 and *m*-PEA3.

Solubility parameter δ determined by Van Krevelen method ¹

In this study, the solubility parameter of m-PEAs was calculated based on Van Krevelen method. Here, we choose m-PEA1 (M_r =330 g/mol, ρ \approx 1.0 g/cm³) as an example, and calculate the solubility parameter δ_d , δ_p , δ_h and δ according to the formulas 1-2. In this method, the solubility parameters δ are divided into three parts: δ_d , δ_p , δ_h , where δ_d is correlated with dispersion forces, δ_p is correlated with polar forces and δ_h is correlated with hydrogen bonding. Similarly, F_{di} is the molar attraction constant correlated with dispersion forces, F_{pi} is the molar attraction constant correlated with polar forces and E_{hi} is the cohesive energy correlated with hydrogen bonding.

$$\delta d = \frac{\sum Fdi}{V}; \, \delta p = \frac{\sqrt{\sum Fpi^2}}{V}; \, \delta h = \sqrt{\frac{\sum Ehi}{V}}; \, V = M_r/\rho$$

$$\delta = \sqrt{\delta d^2 + \delta p^2 + \delta h^2}$$
(1)

Firstly, we calculate the $\sum F_{di}$, $\sum F_{pi}^2$ and $\sum E_{hi}$ based on the data of component group contribution shown in Table S1. And the repeat units of *m*-PEA1 are shown in Scheme S1. Next, the δ_d , δ_p , δ_h are calculated according to the formula 1, and the δ is calculated according to the formula 2.

Scheme S1. Repeat units of *m*-PEA1.

Table S1. Data of group contribution to solubility parameter of *m*-PEA1.

Structural group	$\mathbf{F}_{di}/(\mathbf{MJ}\!\cdot\!\mathbf{m}^3)^{1/2}\!\cdot\!\mathbf{mol}^{\text{-}1}$	\mathbf{F}_{pi} / $(\mathrm{MJ}{\cdot}\mathrm{m}^3)^{1/2}{\cdot}\mathrm{mol}^{-1}$	\mathbf{E}_{hi} / $\mathbf{J} \cdot \mathbf{mol}^{-1}$
(o, m, p)	1270	110	0
- o-	100	400	3000
 	290	770	2000
H —N—	160	210	3100

1. D. W. Van Krevelen, *Properties of Polymers*, Elsevier, Fourth edition, 2009, 240-246.