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Coupled Mode Theory

The transmission characteristic of the waveguide is based on the couple mode theory (CMT). The 

light propagation through the waveguide and the interaction between the co-propagating light are 

important to understand the basic principle of different waveguide based devices like micro ring 

resonator, mach-zender interferometer (MZI) etc. 

Two propagating modes in the waveguide can be coupled or interference phenomena can occur 

due to close proximity. Perturbation theory can be used to analysis the light propagation in the 

coupled waveguide. Condition is to maintain the same EM-field distribution before and after the 

coupling. The aim of this section is to give the basic mathematics related to the coupled mode 

theory for the waveguide structure in the co-directional coupler. The coupling mechanism and 

power transfer between waveguides for the co-directional coupler are discussed [1].   

Consider two waveguides, refractive index n1 and n2 with enough distance that each waveguide is 

effected by other and coupled power to another (Figure S1). 

The directional coupler before coupling can support eigen modes, Ep and Hp (p=1, 2) which 

satisfies the following Maxwell’s equations [1]:

                                                Ep = -jwµ0 Hp                         (S.1)∇  𝑥  

Hp = jwε0 N2
p Ep                                        (S.2)∇  𝑥  

Here, N2
p = Refractive index distributions of the waveguides.
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Figure S1: Directional coupler
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The coupled EM fields can be considered as sum of eigen modes of the each waveguide:

E = A(z) E1 + B(z) E2                                     (S.3)

H = A(z) H1 + B(z) H2                                    (S.4)

The coupled EM fields also satisfies the Maxwell’s equations like before coupling:

                                                E = -jwµ0 H                                             (S.5)∇  𝑥  

H = jwε0 N2
p E                                        (S.6)∇  𝑥  

Now, by replacing (S.3) and (S.4) into (S.5) and (S.6) we will get the equation of (S.7) and (S.8) 

    (S.7)             

        (S.8)    0)(exp)(exp 122121221  zjAjkAjzj
dz
dAc

dz
dB 

From those equ. (S.7), (S.8) three important parameter Kpq, Cpq and p are seen. The properties of 𝜒

the directional coupler can be understand from those parameters.

The mode coupling co-efficient, Kpq (p,q=1,2) of a directional coupler indicate the possibility of 

polarization of conversion from the waveguide-I to the waveguide-II. The mode coupling co-

efficient, Kpq can be 

Kpq =                              (S.9)
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This indicate the overlap of the fields. If field of the waveguide-I is orthogonal to the waveguide-

II, K12 = 0 means no power coupling between the modes. In the case of small width waveguide, 

K12 0 means some value of the overlap fields are found due to the absence of pure or 100% TE 
or TM modes. Modes are known as quasi TE or TM (also say TE like and TM like modes). 

Therefore, some power exist even in the longitudinal fields. This is only true for small waveguide. 

Based on this concepts small dimension waveguide are used for the passive polarization devices 

[1]. 

    0)(exp)(exp 121211212  zjBjkAjzj
dz
dBc
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Another important parameter butt coupling coefficient, C12 is defined as 

Cpq =                       (S.10)
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This indicate the excitation efficiency of waveguide-I due to the field of waveguide-II. This may 

happen, when the eigen modes (E1H1) of waveguide-I is in the cladding region of waveguide-II 

and it’s eigen modes (E2 H2) make excitation to waveguide-I.

Another, important parameter is χp, indicate the electric field distribution coupled to the adjacent 

waveguide. Generally, χp is η times smaller than kpq and cannot be neglected when the waveguides 

are very close to each other. The expression for χp is 

p =                          (S.11)𝜒
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The optical power carried by the waveguide due to the eigen mode is given by

Pp =  p x Hp
*) uz dx dy                                        (S.12)
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The difference of propagation constants between the waveguides, δ = (β2 – β1)/2

For the co-directional coupler β1, β2 > 0 but in the contra-directional coupler β1 > 0 and β2 < 0. 

For the lossless waveguide, the power remain constant. Therefore,  = 0. One important 

∂𝑃
∂𝑧

relation between the coupling coefficients and propagation constants differences is 

k21= k*
12 +2δ C*

12

For the symmetrical waveguide (same dimension), having same mode coupling coefficient (k12 = 

k*
21) and butt coupling is zero (C12= 0). Therefore, the propagation constant difference of the 

waveguide is also zero δ = (β2 – β1)/2 = 0. Those are also true if the waveguides are separated from 
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each other at sufficient distances. With asymmetrical waveguide (different WG dimension) all 

those parameters have non-zero values and cannot be negligible. [1]

Ring Resonator and Spectral Characteristics

Ring resonator is an important element of optical switch, modulator, filter and sensing 

applications. A ring resonator consist with the bus waveguide and a loop waveguide. The loop can 

be different types such as circle, ellipse, triangular or racetrack etc. [2]. Figure S2 shows the simple all 

pass ring resonator. 

Figure S2: All pass ring resonator 

The amplitude transmittance of the ring resonator,

 (S.13)
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Here, = single round trip amplitude transmission,a
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           t= transmission co-efficient and 

          = single round trip phase shift

In the lossless case, t2+ =1. Now, the maximum and minimum transmission are2a

Tmax = (S.15) 
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The resonance wavelength of the of the resonator is defined as 

 m= 1, 2, 3…. (S.16)
m
Lneff

res 

The critical coupling is define as the resonance condition in which the transmission at the output 

port is zero. That means Tmin drops to zero,  = t or 1- = k2, which indicate the transmitted a 2a

power equals to the loss in the ring. 

The full width at half maximum (FWHM) is the 3dB resonance width is defined as 

FWHM = (S.17)
atLn

at
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Here, ng = group index of waveguide and function of effective index and wavelength is defined 

as 

ng = neff - (S.18)
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The on-off extinction ratio is defined as the ratio of Tmax and Tmin:

ER = (S.19) 
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For the critical coupling, Tmin = 0, so ER value is large. For our simulation 

ER = = = 2.036349832 
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The wavelength range between two resonances is known as free spectral range (FSR):
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FSR = (S.20)
Lng

2

For 486x220 nm2 SOI waveguide group index is found ng . 55.4

The finesses is defined as the ratio of FSR and resonance width:

Finesse = (S.21)
FWFM
FSR

The finesses indicate the sharpness of the resonance relative to their spacing. The Q-factor is 

measured as the sharpness relative to the central frequency:

Q-factor = (S.22)
FWHM

res

It can be also defined as 

Q-factor = (S.23)
)1( at

atLn
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The physical meaning of the Q-factor indicate the number of roundtrip by the light through the 

ring waveguide before it loss to initial values. More specifically, at Q-value energy lost 1/e of the 

initial energy. To define the Q-factor, ring is excited to some energy level and consider the loss of 

energy with time.  Therefore, to make high Q-factor reduction of loss due to coupler is important. 

This section is an adaption of [1, 3]. 
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