Supporting Information

A Concise Synthesis of Quinolinium, and Biquinolinium Salts and Biquinolines from Benzylic Azides and Alkenes Promoted by Copper(II) Species

Wei-Chen Chen, Parthasarathy Gandeepan, Chia-Hung Tsai, Ching-Zong Luo, Pachaiyappan Rajamalli, and Chien-Hong Cheng*

Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.

Table of Contents	Page No
General Procedures	S-2
Table S1. Reaction Optimization Studies for the Synthesis of Quinolinium Salt 3aa	S-4
Table S2. Optimization studies for the Suitable Oxidant for the Synthesis of Quinolinium Salt 3aa	S-6
Table S3. Optimization of Lewis Acid Metal Catalyst for the Quinolinium Salt 3aa Formation	S-7
Table S4. Optimization Studies for the Synthesis of Biquinolinium Salt 4ja	S-8
Deuterium Labeling Experiments	S-9
Reference	S-12
¹ H and ¹³ C NMR and HRMS Data	S-13
¹ H and ¹³ C NMR Spectra	S-25
X-Ray Data of 3af', 4ja, and 5ka	S-49

chcheng@mx.nthu.edu.tw

General. All reactions were conducted under nitrogen atmosphere on a dual-manifold Schlenk line unless otherwise mentioned and in oven-dried glass wares. Benzyl azides were synthesized according to the literature procedures. Other reagents were commercially available and used as purchased.

General Procedure for the Synthesis of Benzylic Azides 1¹

$$R \xrightarrow{II} Br \qquad \frac{NaN_3}{DMF, r.t., overnight} \qquad R \xrightarrow{II} N_3$$

Substituted benzyl bromide (1.0 equiv.) and sodium azide (1.5 equiv.) were dissolved in DMF (2.0 mL/mmol) and stirred at room temperature for overnight. At the end of the reaction, the mixture was diluted with water and extracted with diethyl ether. The combined organic solution was concentrated in vacuo and the mixture was purified by a silica gel column (*n*-hexane/EtOAc, 90:10) to afford the substituted benzyl azide.

General Procedure for the Synthesis of Quinolinium Salts 3

Condition A: A sealed tube that contained $CuSO_4$ (178 mg, 1.12 mmol) and $NaBF_4$ (24 mg, 0.2 mmol) was evacuated and purged with nitrogen gas three times. MeNO₂ (2.0 mL) was then added to the tube, and the suspension was stirred for 2 min at ambient temperature. Then, benzylic azide **1** (0.64 mmol), alkene **2** (0.32 mmol), H₂O (40 µL, 2.22 mmol), and additional MeNO₂ (1 mL) were added to the system via syringe sequentially. The reaction was stirred at 100°C for 24 h. At the end of the reaction, the mixture was diluted with CH₂Cl₂ (10 mL), filtered through a Celite pad, and washed three times with CH₂Cl₂ (3 × 20 mL). The combined filtrate was concentrated in vacuo and the mixture was purified by a silica gel column using DCM/MeOH (95:5) as eluent to afford the desired pure product **3**.

Condition B: A sealed tube that contained $CuSO_4$ (13 mg, 0.080 mmol), $NaBF_4$ (24 mg, 0.20 mmol) and $(NH_4)_2S_2O_8$ (92 mg, 0.40 mmol) was evacuated and purged with nitrogen gas three times. MeNO₂ (2.0 mL) was then added to the tube, and the suspension was stirred for 2 min at ambient temperature. Then, benzylic azide **1** (0.64 mmol), alkene **2** (0.32 mmol), H_2O (40 µL, 2.22 mmol) and additional MeNO₂ (1 mL)

were added to the system via syringe sequentially. The reaction was stirred at 100°C for 24 h. At the end of the reaction, the mixture was diluted with CH_2Cl_2 (10 mL), filtered through a Celite pad, and washed three times with CH_2Cl_2 (3 × 20 mL). The combined filtrate was concentrated in vacuo and the mixture was purified by a silica gel column using DCM/MeOH (95:5) as eluent to afford the desired pure product **3**.

General Procedure for the Synthesis of Biquinolinium Salts 4

A sealed tube containing $Cu(BF_4)_2.6H_2O$ (276 mg, 0.80 mmol) was dissolved in MeNO₂ (2 mL) under nitrogen gas. Then, benzylic azide 1 (0.64 mmol), alkene 2 (0.32 mmol) and additional MeNO₂ (1 mL) were added to the system via syringe sequentially. The reaction was allowed to stir at 100 °C for 24 h. When the reaction was completed, the mixture was diluted with CH_2Cl_2 (10 mL) and filtered through a Celite pad and washed several times with CH_2Cl_2 (50 mL). The combined filtrate was concentrated in vacuo and the residue was purified by column chromatography on a silica gel column using DCM/MeOH (95:5) as eluent to afford the desired pure product 4.

General Procedure for the Synthesis of Substituted Biquinolines 5

A sealed tube containing $Cu(BF_4)_2.6H_2O$ (276 mg, 0.80 mmol) was dissolved in MeNO₂ (2 mL) under nitrogen gas. Then, benzyl azide **1** (0.64 mmol), alkene **2** (0.32 mmol) and additional MeNO₂ (1 mL) were added to the system via syringe sequentially. The reaction was allowed to stir at 100 °C for 24 h. When the reaction was completed, the mixture was diluted with CH_2Cl_2 (10 mL) and filtered through a Celite pad and washed several times with CH_2Cl_2 (50 mL). The combined filtrate was concentrated in vacuo and the residue was purified by column chromatography on a silica gel column using *n*-hexane /Ethyl acetate (95:5) as eluent to afford the desired pure product **5**.

	Me N ₃ +	Cu-salt, additive solvent, temp, time	-	X N Me		
	1a 2a			3aa		
Entry	Cu Salt (mmol)	Additive (mmol)	Solvent	Temp. (°C)	Time (h)	Yield (%) ^b
1	$Cu(BF_4)_2 \cdot 6H_2O(0.64)$		$MeNO_{2}$	100	24	57
2	$Cu(OAc)_2 \cdot H_2O(0.64)$	NaBF ₄ (0.35)	$MeNO_{2}$	100	24	
3	$Cu(OPiv)_2(0.64)$	NaBF ₄ (0.35)	$MeNO_{2}$	100	24	
4	$Cu(OTf)_2(0.64)$	NaBF ₄ (0.35)	$MeNO_{2}$	100	24	
5	$Cu(OH)_{2}(0.64)$	NaBF ₄ (0.35)	$MeNO_{2}$	100	24	
6	$Cu(OCOCF_3)_2 \cdot H_2O(0.64)$	NaBF ₄ (0.35)	$MeNO_{2}$	100	24	34
7	CuSO ₄ (0.64)	NaBF ₄ (0.35)	$MeNO_{2}$	100	24	73
8	CuSO ₄ (0.64)	NaI	$MeNO_{2}$	100	24	16
9	CuSO ₄ (0.64)	NaSbF ₆ (0.35)	MeNO ₂	100	24	39
10	CuSO ₄ (0.64)	NaClO ₄ (0.35)	$MeNO_{2}$	100	24	78
11	CuSO ₄ (0.64)		MeNO ₂	100	24	
12		NaBF ₄ (0.35)	$MeNO_{2}$	100	24	
13	CuSO ₄ (0.80)	$NaBF_4$ (0.35)	MeNO ₂	100	24	80
14	CuSO ₄ (0.96)	NaBF ₄ (0.35)	$MeNO_{2}$	100	24	88
15	$CuSO_{4}$ (1.12)	NaBF ₄ (0.35)	MeNO ₂	100	24	93
16	$CuSO_{4}$ (1.28)	NaBF ₄ (0.35)	$MeNO_{2}$	100	24	92
17	$CuSO_{4}$ (1.12)	NaBF ₄ (0.35)	$MeNO_{2}$	90	24	57
18	$CuSO_{4}$ (1.12)	NaBF ₄ (0.35)	$MeNO_{2}$	8 0	24	32
19	$CuSO_{4}$ (1.12)	NaBF ₄ (0.35)	$MeNO_{2}$	100	20	80
20	$CuSO_{4}$ (1.12)	NaBF ₄ (0.35)	$MeNO_{2}$	100	12	70
21	$CuSO_{4}$ (1.12)	NaBF ₄ (0.35)	$MeNO_{2}$	100	8	55
22	$CuSO_{4}$ (1.12)	NaBF ₄ (0.35)	$MeNO_{2}$	100	24	85 ^c
23	$CuSO_{4}$ (1.12)	NaBF ₄ (0.35)	AcOH	100	24	8
24	$CuSO_{4}$ (1.12)	NaBF ₄ (0.35)	EtOH	100	24	trace
25	$CuSO_{4}$ (1.12)	NaBF ₄ (0.35)	dioxane	100	24	trace
26	CuSO ₄ (1.12)	NaBF ₄ (0.2) H2O (1.92)	MeNO ₂	100	24	88
27	CuSO ₄ (1.12)	NaBF ₄ (0.2) H2O (2.22)	MeNO ₂	100	24	95

 Table S1. Reaction Optimization Studies for the Synthesis of Quinolinium Salt 3aa^a

Table S1. (Continued)

^{*a*}All reactions were performed using **1a** (0.64 mmol), **2a** (0.32 mmol), Cu-salt, H₂O (2.22 mmol) and additive in MeNO₂ (3 mL) at 80-100 °C for 8-24 h. ^{*b*}Yields were calculated based on **2a** (0.16 mmol) as the limiting reagent; Yields were determined by ¹H NMR integration method using mesitylene as the internal standard. ^{*c*}Reaction was conducted using **1a** (0.48 mmol) and **2a** (0.32 mmol).

Table S2. Optimization studies for the Suitable Oxidant for the Synthesis ofQuinolinium Salt **3aa**^a

Me 1a	+ CuSO ₄ (0 NaBF ₄ (0 oxidant (0 H MeNO ₂ , 10 2a	.08 mmol) <u>0.2 mmol)</u> 0.4 mmol) 1 ₂ O 0 °C, 24 h	BF ₄ N Me 3aa
Entry	Oxidant (mmol)	H ₂ O (mmol)	3aa Yield (%) ^b
1	$(NH_4)_2S_2O_8$		47
2	$(NH_4)_2S_2O_8$	1.67	60
3	$(NH_4)_2S_2O_8$	2.22	82 (77)
4	$(NH_4)_2S_2O_8$	2.78	51
5	$K_2S_2O_8$	2.22	22
6	$Na_2S_2O_8$	2.22	36
7	oxone	2.22	10
8	DTBP		
9	PhI(OAc) ₂		
10	1 atm O ₂		40

^{*a*}All reactions were conducted using **1a** (0.64 mmol), **2a** (0.32 mmol), $CuSO_4$ (0.8 mmol), $NaBF_4$ (0.2 mmol), oxidant (0.4 mmol), and H_2O (used as shown in the Table) in MeNO₂ (3 mL) at 100 °C for 24 h. ^{*b*}Yields were determined by ¹H NMR integration methods using mesitylene as the internal standard. DTBP - di*tert*-butyl peroxide. Yield given in the parenthesis was isolated yield.

 Table S3. Optimization of Lewis Acid Metal-Catalyst for the Quinolinium salt 3aa
 Formation^a

N ₃ + Me 1a	2a	Cat. (0.08 mmol) NaBF ₄ (0.2 mmol) (NH ₄) ₂ S ₂ O ₈ (0.4 mmol) H ₂ O (2.22 mmol) MeNO ₂ , 100 °C, 24 h	BF4 N Me 3aa
Entry		Metal Catalyst	3aa Yield (%) ^b
1		CuSO ₄	82
2		FeCl ₃	61
3		FeBr ₃	73
4		$Fe_2(SO_4)_3$	40
5		Fe(acac) ₃	19
6		Fe(ClO ₄) ₃	56
7		FeCl ₂	47
8		InCl ₃	49
9		In(OTf) ₃	22

^{*a*}Reaction conditions: **1a** (0.64 mmol), **2a** (0.32 mmol), metal catalyst (0.08 mmol), $(NH_4)_2S_2O_8$ (0.4 mmol), $NaBF_4$ (0.2 mmol), and H_2O (2.22 mmol) in MeNO₂ (3 mL) at 100 °C for 24 h. ^{*b*}Yields were determined by ¹H NMR method using mesitylene as the internal standard.

^{*a*}All the reactions were conducted using **1j** (0.64 mmol), **2a** (0.32 mmol) with the conditions shown in the table. ^{*b*}Isolated yields are given based on **2a** (0.08 mmol) as the limiting reagent. ^{*c*}Yield given in the parenthesis was isolated yield.

Deuterium Labeling Experiments

Synthesis of 1-(azidomethyl-*d*)-4-methylbenzene (**D**₁-1a)

To a solution of 4-Methylbenzaldehyde (1.2 g, 10 mmol) in methanol (50 mL), NaBD₄ (630 mg, 20 mmol) was added slowly at 0 °C and stirred at room temperature for 3 h. Then, water (30 mL) was slowly added to the reaction mixture. The reaction mixture was extracted with diethyl ether (20×3) and the combined organic solution was dried over MgSO₄ and concentrated under reduced pressure. The crude product was directly used for next the step without purification.

To a solution of *p*-tolylmethan- d_1 -ol (1.23 g, 10 mmol) in DCM (100 mL) was added PBr₃ (5.4 g, 1.9 mL, 20 mmol) dropwise at room temperature. The mixture was stirred at room temperature for 15 h. The mixture was washed with ice water, dried over MgSO₄ and concentrated under reduced pressure to give 1-(bromomethyl-*d*)-4methylbenzene in 90% yield.

1-(Bromomethyl- d_1)-4-methylbenzene (9 mmol) and sodium azide (13.5 mmol) were dissolved in DMF (20 mL) and stirred at room temperature for overnight. At the end of the reaction, the mixture was diluted with water and extracted with diethyl ether. The combined organic solution was concentrated in vacuo and the mixture was purified by a silica gel column (*n*-hexane/EtOAc, 90:10) to afford the 1-(azidomethyl- d_1)-4-methylbenzene (1.3 g, 98%). ¹H NMR (400 MHz, (CD₃)₂SO): δ 7.24-7.19 (m, 4 H), 4.28 (s, 1 H), 2.37 (s, 3 H); ¹³C NMR (100 MHz, (CD₃)₂SO): δ 138.4 (C), 129.8 (2 CH), 129.5 (C), 128.5 (2 CH), 54.5 (t, *J* = 22 Hz, *C*D), 21.4 (CH₃).

¹³C NMR spectra of 1-(azidomethyl- d_1)-4-methylbenzene (**D**₁-1**a**)

A sealed tube that contained CuSO₄ (178 mg, 1.12 mmol) and NaBF₄ (24 mg, 0.2 mmol) was evacuated and purged with nitrogen gas three times. MeNO₂ (2.0 mL) was then added to the tube, and the suspension was stirred for 2 min at ambient temperature. Then, 1-(azidomethyl-*d*)-4-methylbenzene **D**₁-1a (94.8 mg, 0.64 mmol), styrene 2a (33.3 mg, 0.32 mmol), H₂O (40 μ L, 2.22 mmol), and additional MeNO₂ (1 mL) were added to the system via syringe sequentially. The reaction was stirred at 100°C for 24 h. At the end of the reaction, the mixture was diluted with CH₂Cl₂ (10 mL), filtered through a Celite pad, and washed three times with CH₂Cl₂ (3 × 20 mL). The combined filtrate was concentrated in vacuo and the mixture was purified by a silica gel column using DCM/MeOH (95:5) as eluent to afford the desired pure product **D**₂-3aa (55mg, 81%).

Reference

(1) C.-Z. Luo, P. Gandeepan, Y.-C. Wu, W.-C. Chen, C.-H. Cheng, *RSC Adv.* **2015**, *5*, 106012.

¹H and ¹³C NMR and HRMS Data

9-Methyl-1,7-diphenyl-2,3-dihydro-1*H*-pyrido[3,2,1-*ij*]quinolin-4-ium tetrafluoroborate (3aa)

Brown solid; m.p. 141-144 °C; ¹**H NMR** (400 MHz, (CD₃)₂SO): δ 9.35 (d, *J* = 6.0 Hz, 1H), 8.09 (d, *J* = 6.0 Hz, 1 H), 7.82 (s, 1 H), 7.67 (s, 5 H), 7.51 (s, 1 H), 7.39-7.35 (m, 2 H), 7.32-7.30 (m, 1 H), 7.19 (d, *J* = 8.0 Hz, 2 H), 5.01-4.96 (m, 1 H), 4.83-4.74

(m, 2 H), 2.62-2.53 (m, 2 H), 2.40 (s, 3 H); ¹³C NMR (100 MHz, $(CD_3)_2SO$): δ 156.8 (C), 146.6 (CH), 143.1 (C), 139.9 (C), 136.4 (CH), 135.3 (C), 134.8 (C), 132.7 (C), 130.4 (CH), 129.6 (2 CH), 129.2 (2 CH), 128.8 (2 CH), 128.6 (2 CH), 127.8 (C), 127.2 (CH), 125.1 (CH), 121.9 (CH), 53.8 (CH₂), 41.7 (CH), 28.3 (CH₂), 21.2 (CH₃); ¹¹B NMR (160 MHz, (CD₃)₂SO) : δ -1.231; ¹⁹F NMR (470 MHz, (CD₃)₂SO): δ -148.58, -148.64; HRMS (FAB) calcd for: C₂₅H₂₂N⁺ 336.1747, found: 336.1751; IR (KBr, cm⁻¹): 1612, 1057 (v _{B-F}), 764, 702.

9-Isopropyl-1,7-diphenyl-2,3-dihydro-1*H*-pyrido[3,2,1-*ij*]quinolin-4-ium tetrafluoroborate (3ba)

Brown solid; m.p. 120-122 °C; ¹H NMR (400 MHz, (CD₃)₂SO): δ 9.39 (d, *J* = 6.0 Hz, 1 H), 8.14 (d, *J* = 6.0 Hz, 1 H), 7.88 (s, 1 H), 7.72 (s, 5 H), 7.65 (s, 1 H),7.42-7.39 (m, 2 H), 7.35 (d, *J* = 7.2 Hz, 1 H), 7.21 (d, *J* = 8.0 Hz, 2 H), 5.04-4.99 (m, 1 H), 4.82-

4.79 (m, 2 H), 3.05 (quin, J = 7.2 Hz, 1 H), 2.67-2.57 (m, 2 H), 1.13 (t, J = 7.2 Hz, 6 H); ¹³C NMR (100 MHz, (CD₃)₂SO): δ 157.0 (C), 149.7 (C), 146.7 (CH), 143.1 (C), 135.3 (C), 135.1 (C), 134.1 (CH), 133.0 (C), 130.5 (CH), 129.7 (2 CH), 129.2 (2 CH), 128.8 (2 CH), 128.5 (2 CH), 127.7 (C), 127.1 (CH), 122.4 (CH), 121.9 (CH), 53.7 (CH₂), 41.8 (CH), 33.2 (CH), 28.3 (CH₂), 23.1 (CH₃), 23.0 (CH₃); **HRMS (FAB)** calcd for: C₂₇H₂₆N⁺ 364.2060, found: 364.2065; **IR (KBr,** cm⁻¹): 2962, 1612, 1458, 1065 (v

_{B-F}), 764, 702.

9-Methoxy-1,7-diphenyl-2,3-dihydro-1*H*-pyrido[3,2,1-*ij*]quinolin-4-ium tetrafluoroborate (3ca)

Brown solid; m.p. 161-163 °C; ¹**H** NMR (400 MHz, (CD₃)₂SO): δ 9.29 (d, *J* = 6.0 Hz, 1 H), 8.11 (d, *J* = 6.0 Hz, 1 H), 7.77-7.70 (m, 5 H), 7.43-7.39 (m, 2 H), 7.36-7.35 (m, 2 H), 7.25-7.23 (m, 3 H), 5.04-4.98 (m, 1 H), 4.88-4.82 (m, 1 H),

4.79-4.76 (m, 1 H), 3.78 (s, 3 H), 2.65-2.59 (m, 2 H); ¹³C NMR (100 MHz, (CD₃)₂SO): δ 158.6 (C), 155.6 (C), 144.8 (CH), 142.6 (C), 135.4 (C), 135.3 (C), 132.2 (C), 130.5 (CH), 129.5 (C), 129.4 (2 CH), 129.3 (2 CH), 128.9 (2 CH), 128.5 (2 CH), 127.3 (CH), 125.9 (CH), 122.3 (CH), 104.5 (CH), 55.7 (CH₃), 54.1. (CH₂), 41.9 (CH), 28.0 (CH₂); HRMS (FAB) calcd for: C₂₅H₂₂NO⁺ 352.1696, found: 352.1699; IR (KBr, cm⁻¹): 1612, 1450, 1041 (v _{B-F}), 764, 702.

1,7,9-Triphenyl-2,3-dihydro-1*H*-pyrido[3,2,1-*ij*]quinolin-4-ium tetrafluoroborate (3da)

Yellow solid; m.p. 175-177 °C; ¹H NMR (400 MHz, (CD₃)₂SO): δ 9.48 (d, *J* = 6.0 Hz, 1 H), 8.22-8.21 (m, 2 H), 8.00 (s, 1 H), 7.82-7.79 (m, 2 H), 7.77-7.73 (m, 3 H), 7.59-7.57 (m, 2 H), 7.50-7.39 (m, 5 H), 7.35-7.33 (m, 1 H), 7.28-7.26 (m, 2

H), 5.09-5.05 (m, 1 H), 4.94-4.85 (m, 2 H), 2.73-2.63 (m, 2 H); ¹³C NMR (100 MHz, (CD₃)₂SO): δ 157.6 (C), 147.5 (CH), 143.1 (C), 140.7 (C), 137.7 (C), 135.7 (C), 135.2 (C), 133.9 (C), 133.5 (CH), 130.7 (CH), 129.8 (2 CH), 129.4 (2 CH), 129.3 (2 CH), 129.0 (CH), 128.9 (2 CH), 128.6 (2 CH), 128.1 (C), 127.2 (3 CH), 123.3 (CH), 122.3 (CH), 53.8 (CH₂), 41.9 (CH), 28.2 (CH₂); **HRMS (FAB)** calcd for: C₃₀H₂₄N⁺ 398.1903, found: 398.1909; **IR (KBr, cm⁻¹)**: 1604, 1057 (v _{B-F}), 764, 702.

9-Chloro-1,7-diphenyl-2,3-dihydro-1*H*-pyrido[3,2,1-*ij*]quinolin-4-ium tetrafluoroborate (3ea)

Yellow solid; m.p. 124-126 °C; ¹H NMR (400 MHz, (CD₃)₂SO): δ 9.56 (d, J = 6.0 Hz, 1 H), 8.25 (d, J = 6.0 Hz, 1 H), 7.99 (d, J = 2.0 Hz, 1 H), 7.73 (s, 5 H), 7.66-7.65 (m, 1 H), 7.43-7.40 (m, 2 H), 7.37-7.33 (m, 1 H), 7.26-7.23 (m, 2 H), 5.09-5.03

(m, 1 H), 4.92-4.83 (m, 2 H), 2.66-2.59 (m, 2 H); ¹³C NMR (100 MHz, (CD₃)₂SO): δ 156.8 (C), 148.2 (CH), 142.5 (C), 136.0 (C), 135.1 (C), 134.7 (C), 134.2 (C), 134.1 (CH), 130.8 (CH), 129.7 (2 CH), 129.4 (2 CH), 128.9 (2 CH), 128.7 (C), 128.6 (2 CH), 127.4 (CH), 124.9 (CH), 123.0 (CH), 54.1 (CH₂), 41.8 (CH), 28.0 (CH₂); **HRMS** (**FAB**) calcd for: C₂₄H₁₉ClN⁺ 356.1201, found: 356.1203; **IR (KBr,** cm⁻¹): 1604, 1450, 1057 (V _{B-F}), 764, 702.

9-Fluoro-1,7-diphenyl-2,3-dihydro-1*H*-pyrido[3,2,1-*ij*]quinolin-4-ium tetrafluoroborate (3fa)

Brown solid; m.p. 76-78 °C; ¹**H NMR** (400 MHz, (CD₃)₂SO): δ 9.47 (d, *J* = 6.0 Hz, 1 H), 8.24 (d, *J* = 6.0 Hz, 1 H), 7.79-7.76 (m, 1 H), 7.73 (s, 5 H), 7.61-7.58 (m, 1 H), 7.44-7.40 (m, 2 H), 7.37-7.34 (m, 1 H), 7.26-7.24 (m, 2 H), 5.09-5.02 (m, 1 H), 4.91-4.84

(m, 2 H), 2.71-2.59 (m, 2 H); ¹³C NMR (100 MHz, (CD₃)₂SO): δ 160.5 (d, *J* = 250.0 Hz , C), 157.0 (d, *J* = 5.0 Hz , C), 147.5 (*C*H), 142.4 (C), 137.3 (d, *J* = 8.0 Hz , C), 134.8 (C), 133.6 (C), 130.7 (*C*H), 129.6 (2 *C*H), 129.4 (d, *J* = 12.5 Hz , C), 129.3 (2 *C*H), 128.9 (2 *C*H), 128.6 (2 *C*H), 127.4 (*C*H), 123.8 (d, *J* = 26.0 Hz , *C*H), 122.7 (*C*H), 110.4 (d, *J* = 24.0 Hz , *C*H), 54.1 (*C*H₂), 42.0 (*C*H), 28.0 (*C*H₂); **HRMS (FAB)** calcd for: C₂₄H₁₉FN⁺ 340.1496, found: 340.1501; **IR (KBr,** cm⁻¹): 1619, 1450, 1049 (v_{B-F}), 764, 702.

9-Methyl-1,7,8-triphenyl-2,3-dihydro-1*H*-pyrido[3,2,1-*ij*]quinolin-4-ium tetrafluoroborate (3ga)

Brown solid; m.p. 156-158 °C; ¹H NMR (400 MHz, (CD₃)₂SO): δ 9.41 (d, *J* = 6.0 Hz, 1 H), 8.17 (d, *J* = 6.0 Hz, 1 H), 8.08 (s, 1 H), 7.76-7.73 (m, 5 H), 7.54 (t, *J* = 7.6 Hz, 1 H), 7.34 (t, *J* = 7.6 Hz, 1 H), 7.29 (d, *J* = 7.2 Hz, 1 H), 7.19-

7.17 (m, 3 H), 7.04 (t, J = 7.6 Hz, 1 H), 6.74-6.72 (m, 2 H), 6.34 (d, J = 7.6 Hz, 1 H), 4.97(d, J = 14 Hz, 1 H), 4.50-4.46 (m, 2 H), 2.69-2.62 (m, 1 H), 2.32 (d, J = 14 Hz, 1 H), 2.10 (s, 3 H); ¹³**C NMR** (100 MHz, (CD₃)₂SO): δ 157.5 (C), 148.9 (C), 148.0 (CH), 143.4 (C), 140.0 (C), 137.3 (C), 135.8 (C), 135.7 (C), 130.9 (CH), 130.2 (2 CH), 129.7 (2 CH), 129.4 (C), 129.2 (CH), 128.7 (2 CH), 128.6 (3 CH), 128.4 (CH), 128.3 (CH), 128.0 (CH), 127.5 (C), 127.1 (CH), 126.8 (CH), 122.3 (CH), 51.8 (CH₂), 40.1 (CH), 28.4 (CH₂), 21.9 (CH₃); **HRMS (FAB)** calcd for: C₃₁H₂₆N⁺ 412.2060, found: 412.2067; **IR (KBr,** cm⁻¹): 1597, 1049 (v_{B-F}), 764, 702.

6,8-Dimethyl-4-phenylquinoline (3ha')

Pale yellow oil; ¹H NMR (400 MHz, CDCl₃): δ 8.88 (d, J = 4.4 Hz, 1 H), 7.51-7.45 (m, 6 H), 7.41 (s, 1 H), 7.26 (d, J = 4.4 Hz, 1 H), 2.82 (s, 3 H), 2.40 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): δ 148.0 (C), 147.7 (CH), 146.3 (C), 138.6 (C), 136.9

(C), 136.0 (C), 131.9 (CH), 129.5 (2 CH), 128.4 (2 CH), 128.1 (CH), 126.7 (C), 122.6 (CH), 121.2 (CH), 21.7 (CH₃), 18.5 (CH₃); **HRMS (EI)** calcd for: C₁₇H₁₅N 233.1204, found: 233.1211; **IR (KBr,** cm⁻¹): 2924, 2854, 1489, 1450, 864, 764, 702.

9-Methyl-1,7-di-*p*-tolyl-2,3-dihydro-1*H*-pyrido[3,2,1-*ij*]quinolin-4-ium tetrafluoroborate (3ab)

Brown solid; m.p. 99-101 °C; ¹H NMR (400 MHz, (CD₃)₂SO): δ 9.36 (d, J = 6.0 Hz, 1 H), 8.07 (d, J = 6.0 Hz, 1 H), 7.88 (s, 1 H), 7.60 (d, J = 8.0 Hz, 2 H), 7.53-7.51 (m, 3 H), 7.20 (d, J = 8.0 Hz, 2 H), 7.09 (d, J = 8.0 Hz, 2 H), 5.02-4.96 (m, 1 H), 4.84-4.79 (m, 1 H), 4.73-4.70 (m, 1 H), 2.60-2.54 (m, 2 H), 2.48 (s, 3 H), 2.43 (s, 3 H), 2.31 (s, 3 H); ¹³C

NMR (100 MHz, (CD₃)₂SO): δ 156.9 (C), 146.4 (CH), 140.4 (C), 140.1 (C), 139.8 (C), 136.3 (CH), 136.3 (C), 134.8 (C), 132.9 (C), 132.5 (C), 129.8 (2 CH), 129.7 (2 CH), 129.4 (2 CH), 128.5 (2 CH), 127.7 (C), 125.2 (CH), 121.7 (CH), 53.8 (CH₂), 41.4 (CH), 28.4 (CH₂), 21.2 (CH₃), 21.0 (CH₃), 20.6 (CH₃); **HRMS (FAB)** calcd for: C₂₇H₂₆N⁺ 364.2080, found: 364.2066; **IR (KBr,** cm⁻¹): 2923, 1612, 1442, 1057 (v_{B-F}), 825, 733.

1,7-Bis(4-bromophenyl)-9-methyl-2,3-dihydro-1*H*-pyrido[3,2,1-*ij*]quinolin-4-ium tetrafluoroborate (3ac)

Brown solid; m.p. 64-66 °C; ¹H NMR (400 MHz, $(CD_3)_2SO$): δ 9.40 (d, J = 6.0 Hz, 1 H), 8.14 (d, J = 6.0 Hz, 1 H), 7.91 (d, J = 8.4 Hz, 2 H), 7.85 (s, 1 H), 7.64 (d, J = 8.4 Hz, 2 H), 7.58 (d, J = 8.0 Hz, 2 H), 7.55 (s, 1 H), 7.19 (d, J = 8.0 Hz, 2 H), 5.04-4.99 (m, 1 H), 4.86-4.78 (m, 2 H), 2.62-2.56 (m, 2 H), 2.45 (s, 3 H); ¹³C NMR (100 MHz, $(CD_3)_2SO$):

δ 155.6 (C), 146.7 (CH), 142.5 (C), 140.2 (C), 136.5 (CH), 134.7 (C), 134.4 (C), 132.2 (C), 132.2 (2 CH), 131.7 (4 CH), 130.9 (2 CH), 127.7 (C), 125.1 (CH), 124.2 (C), 121.9 (CH), 120.4 (C), 53.8 (CH₂), 41.2 (CH), 28.1 (CH₂), 21.1 (CH₃); **HRMS (FAB)** calcd for: C₂₅H₂₀Br₂N⁺ 491.9957, found: 491.9965; **IR (KBr,** cm⁻¹): 2962, 1612, 1489, 1057 (V _{B-F}), 825, 733.

9-Methyl-1,7-dipentyl-2,3-dihydro-1*H*-pyrido[3,2,1-*ij*]quinolin-4-ium tetrafluoroborate (3ad)

Brown oil; ¹**H NMR** (400 MHz, (CD₃)₂SO): δ 9.16 (d, *J* = 6.0 Hz, 1 H), 8.21 (s, 1 H), 7.96 (d, *J* = 6.0 Hz, 1 H), 7.93 (s, 1 H), 4.86-4.83 (m, 2 H), 3.31-3.29 (m, 2 H), 3.27-3.23 (m, 1 H), 2.62 (s, 3 H), 2.35-2.32 (m, 1 H), 2.25-2.19 (m, 1 H), 1.80-

1.66 (m, 4 H), 1.43-1.33 (m, 10 H), 0.91-0.87 (m, 6 H); ¹³C NMR (100 MHz, $(CD_3)_2SO$): δ 160.3 (C), 146.0 (CH), 139.4 (C), 135.2 (CH), 134.0 (C), 133.3 (C), 128.4 (C), 122.9 (CH), 121.0 (CH), 52.5 (CH₂), 34.9 (CH), 34.3 (CH₂), 32.2 (CH₂), 31.2 (CH₂), 31.0 (CH₂), 29.3 (CH₂), 25.7 (CH₂), 23.9 (CH₂), 22.0 (CH₂), 21.9 (CH₂), 21.2 (CH₃), 13.9 (CH₃), 13.8 (CH₃); **HRMS (FAB)** calcd for: $C_{23}H_{34}N^+$ 324.2686, found: 324.2690; **IR (KBr,** cm⁻¹): 2931, 2861, 1612, 1458, 1057 (v_{B-F}), 764, 732.

2,6,9-Trimethyl-1,7-diphenyl-2,3-dihydro-1*H*-pyrido[3,2,1-*ij*]quinolin-4-ium tetrafluoroborate (3ae)

Yellow solid; m.p. 78-80 °C; ¹H NMR (400 MHz, (CD₃)₂SO): δ 9.45 (s, 1 H), 7.72-7.66 (m, 3 H), 7.45-7.41 (m, 4 H), 7.38-7.36 (m, 1 H), 7.29 (s, 1 H), 7.23-7.22 (m, 3 H), 4.97-4.93 (m, 1 H), 4.80-4.74 (m, 1 H), 4.36 (d, *J* = 9.2 Hz, 1 H), 2.80-2.76 (m, 1 H), 2.35 (s, 3 H), 2.30 (s, 3 H), 1.01 (d, *J* =6.8 Hz, 3 H);

¹³C NMR (100 MHz, (CD₃)₂SO): δ 155.5 (C), 148.0 (CH), 141.8 (C), 139.8 (C), 135.4 (CH), 134.0 (C), 132.9 (C), 132.9 (C), 130.1 (C), 129.5 (CH), 129.2 (2 CH), 129.0 (2 CH), 129.0 (2 CH), 128.8 (C), 128.4 (2 CH), 127.4 (CH), 124.5 (CH), 59.6 (CH₂), 49.3 (CH), 32.6 (CH), 21.3 (CH₃), 17.5 (CH₃), 16.3 (CH₃); HRMS (FAB) calcd for: C₂₇H₂₆N⁺ 364.2080, found: 364.2068 ; IR (KBr, cm⁻¹): 2970, 1620, 1450, 1057 (v _{B-F}), 756, 702.

1-Benzyl-9-methyl-2,3-dihydro-1*H*-pyrido[3,2,1-*ij*]quinolin-4-ium (3af')

Brown solid; m.p. 163-165 °C; ¹**H NMR** (600 MHz, (CD₃)₂SO): δ 9.34 (d, *J* = 5.4 Hz, 1 H), 9.12 (d, *J* = 8.4 Hz, 1 H), 8.11-8.09 (m, 2 H), 7.88 (s, 1 H), 7.37-7.34 (m, 2 H), 7.32-7.31 (m, 2 H), 7.28-7.26 (m, 1 H), 5.05-5.00 (m, 1 H), 4.93-4.90 (m, 1 H), 3.58-

3.55 (m, 1 H), 3.28-3.24 (m, 1 H), 2.94-2.90 (m, 1 H), 2.54 (s, 3 H), 2.26-2.21 (m, 1 H), 2.07-2.03 (m, 1 H); ¹³C NMR (150 MHz, (CD₃)₂SO): δ 147.2 (CH), 145.9 (CH), 139.5 (C), 138.9 (C), 136.0 (CH), 133.7 (C), 132.4 (C), 129.8 (C), 129.4 (2 CH), 128.4 (2 CH), 126.5 (CH), 121.5 (CH), 52.5 (CH₂), 40.3 (CH₂), 36.4 (CH), 23.6 (CH₂), 21.0 (CH₃); **HRMS (FAB)** calcd for: C₂₀H₂₀N⁺ 274.1590, found: 274.1595; **IR** (**KBr**, cm⁻¹): 2924, 2854, 1597, 1450, 1041 (v _{B-F}), 748, 702.

1,9-Dimethyl-1,7-diphenyl-2,3-dihydro-1*H*-pyrido[3,2,1-*ij*]quinolin-4-ium tetrafluoroborate (3ag')

Brown solid; m.p. 146-148 °C; ¹H NMR (600 MHz, (CD₃)₂SO): δ 9.30 (d, *J* = 6.0 Hz, 1 H), 8.09 (d, *J* = 6.0 Hz, 1 H), 7.94-7.94 (m, 1 H), 7.88-7.88 (m, 1 H), 7.71-7.68 (m, 5 H), 7.33 (t, *J* = 7.2 Hz, 2 H), 7.27-7.25 (m, 1 H), 7.14-7.13 (m, 2

H), 4.99-4.95 (m, 1 H), 4.47-4.42 (m, 1 H), 2.77-2.73 (m, 1 H), 2.51 (s, 3 H), 2.48-2.45 (m, 1 H), 1.94 (s, 3 H); ¹³**C NMR** (100 MHz, $(CD_3)_2SO$): δ 157.4 (C), 147.4 (C), 147.1 (CH), 140.6 (C), 137.3 (C), 136.3 (CH), 135.9 (C), 134.8 (C), 130.9 (CH), 130.1 (2 CH), 129.7 (2 CH), 129.0 (2 CH), 128.4 (C), 127.6 (2 CH), 127.2 (CH), 125.8 (CH), 122.3 (CH), 53.1 (CH₂), 41.9 (C), 35.9 (CH₂), 29.3 (CH₃), 21.8(CH₃); **HRMS (FAB)** calcd for: $C_{26}H_{24}N^+$ 350.1903, found: 351.1986 ; **IR (KBr,** cm⁻¹): 2924, 2854, 1604, 1527, 1442, 1049 (v _{B-F}), 764, 702.

1,1',7,8'-Tetraphenyl-2,2',3,3'-tetrahydro-1*H*,1'*H*-[9,10'-bipyrido[3,2,1*ij*]quinoline]-4,4'-diium tetrafluoroborate (4ja)

Yellow solid; m.p. 202-204 °C; ¹H NMR (400 MHz, (CD₃)₂SO): δ 9.43 (d, *J* = 6.0 Hz, 2 H), 8.18 (d, *J* = 6.0 Hz, 2 H), 8.09-8.07 (m, 2 H), 7.91 (s, 1H), 7.77-7.73 (m, 3 H), 7.65-7.61 (m, 8 H), 7.31-7.30 (m, 6 H), 7.15-7.12 (m, 4 H), 5.01-4.96 (m, 2 H), 4.85-4.76 (m, 4 H),

2.61-2.56 (m, 4 H); ¹³C NMR (100 MHz, (CD₃)₂SO): δ158.3 (C), 158.3 (C), 148.7 (2 CH), 143.1 (C), 143.0 (C), 138.4 (C), 138.3 (C), 136.7 (2 C), 135.3 (2 C), 135.2 (C), 135.0 (C), 133.3 (CH), 133.3 (CH), 131.2 (2 CH), 130.1 (4 CH), 129.8 (4 CH), 129.4 (2 CH), 129.3 (2 CH), 128.9 (2 CH), 128.9 (2 CH), 128.5 (2 C), 127.8 (CH), 127.8 (CH), 125.0 (2 CH), 123.0 (CH), 123.0 (CH), 54.7 (CH₂), 54.4 (CH₂), 42.5 (CH), 42.3 (CH), 28.6 (2 CH₂); **HRMS (FAB)** calcd for: C₄₈H₃₈N₂²⁺ 642.3024, found: 642.3028; **IR (KBr,** cm⁻¹): 1604, 1442, 1373, 1304, 1242, 1049 (v _{B-F}), 856, 764, 702.

1,1',7,8'-Tetrakis(4-bromophenyl)-2,2',3,3'-tetrahydro-1*H*,1'*H*-[9,10'bipyrido[3,2,1-*ij*]quinoline]-4,4'-diium tetrafluoroborate (4jc)

Yellow solid; m.p. 216-218 °C; ¹H NMR (400 MHz, (CD₃)₂SO): δ 9.49 (d, J = 4.8 Hz, 2 H), 8.24 (d, J = 6.0 Hz, 2 H), 8.20 (s, 1 H), 8.16 (s, 1 H), 8.07 (s, 1 H), 7.88-7.86 (m, 5 H), 7.70-7.67 (m, 4 H), 7.55-7.53 (m, 4 H), 7.17-7.13 (m, 4 H), 5.03-5.01 (m, 2 H), 4.90-4.80 (m, 4 H), 2.65-2.58 (m, 4 H); ¹³C NMR (100 MHz,

(CD₃)₂SO): δ 156.6 (C), 156.5 (C) 148.4 (2 CH), 142.3 (C), 142.1 (C), 138.1 (C), 137.9 (C), 136.2 (C), 136.1 (C), 134.1 (C), 134.0 (C), 133.9 (C), 133.5 (C), 133.3 (CH), 133.1 (CH), 132.2 (4 CH), 131.9 (4 CH), 131.6 (2 CH), 131.6 (2 CH), 130.8 (2 CH), 130.8 (2 CH), 127.8 (C), 127.8 (C), 124.9 (2 CH), 124.7 (C), 124.7 (C), 122.6 (CH), 122.5 (CH), 120.5 (C), 120.4 (C), 54.0 (CH₂), 53.5 (CH₂), 41.3 (CH), 41.1 (CH), 28.0 (CH₂), 28.0 (CH₂); **HRMS (FAB)** calcd for: C₄₈H₃₄Br₄N₂²⁺953.9445, found: 953.9449; **IR (KBr,** cm⁻¹): 2931, 2867, 1589, 1458, 1065 (v _{B-F}), 825, 733.

1,1',7,8'-tetrapentyl-2,2',3,3'-tetrahydro-1H,1'H-[9,10'-bipyrido[3,2,1ij]quinoline]-4,4'-diium tetrafluoroborate (4jd)

Brown oil; ¹H NMR (400 MHz, (CD₃)₂SO): δ 9.31 (d, *J* = 6.0 Hz, 2 H), 8.74 (s, 2 H), 8.59 (s, 2 H), 8.11 (d, *J* = 6.0 Hz, 2 H), 4.95 (s, 4 H), 3.55-3.51 (m, 4 H), 3.28-3.22 (m, 2 H), 2.45-2.32 (m, 4 H), 1.90-1.77 (m, 8 H), 1.47-1.35 (m, 20 H), 0.91-0.87 (m, 12 H); ¹³C NMR (100 MHz, (CD₃)₂SO): δ 161.9 (2 C), 147.6 (2

CH), 138.2 (C), 138.1 (C), 135.7 (C), 135.6 (C), 134.8 (C), 134.8 (C), 132.6 (CH), 132.6 (CH), 128.7 (C), 128.7 (C), 122.8 (2 CH), 121.9 (2 CH), 52.5 (2 CH₂), 35.3 (2 CH), 34.4 (CH₂), 34.3 (CH₂), 32.3 (2 CH₂), 31.3 (2 CH₂), 31.1 (CH₂), 31.0 (CH₂), 29.6 (2 CH₂), 25.9 (CH₂), 25.8 (CH₂), 23.8 (CH₂), 23.8 (CH₂), 22.1 (CH₂), 22.1 (CH₂), 21.9 (2 CH₂), 14.0 (2 CH₃), 13.9 (2 CH₃); **HRMS (FAB)** calcd for: $C_{44}H_{62}N_2^{2+}$ 618.4902, found: 618.4920; **IR (KBr,** cm⁻¹): 3070, 2931, 2862, 1581, 1458, 1041 (v _{B-F}), 733.

8,8'-Dimethyl-4,4'-diphenyl-6,6'-biquinoline (5ka)

Yellow solid; m.p. 182-184 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.94 (d, *J* = 4.4 Hz, 2 H), 7.95-7.95 (m, 2 H), 7.84-7.83 (m, 2 H), 7.50-7.47 (m, 10 H), 7.33 (d, *J* = 4.4 Hz, 2 H), 2.90 (s, 6 H); ¹³C NMR (100 MHz, CDCl₃): δ148.8 (2 *C*H), 147.3 (2 C), 138.4 (4 C), 138.0 (4 C), 129.6

(4 CH), 129.2 (2 CH), 128.6 (4 CH), 128.3 (2 CH), 126.9 (2 C), 122.3 (2 CH), 121.7 (2 CH), 18.8 (2 CH₃); **HRMS (EI)** calcd for: C₃₂H₂₄N₂ 436.1939, found: 436.1924; **IR** S21 (KBr, cm⁻¹): 2924, 2854, 1489, 1458, 872, 764, 702.

8,8'-Dibromo-4,4'-diphenyl-6,6'-biquinoline (5la)

Yellow solid; m.p. 262-264 °C; ¹H NMR (400 MHz, CDCl₃): δ 9.05 (d, J = 4.4 Hz, 2 H), 8.29 (d, J = 2.0 Hz, 2 H), 8.04 (d, J = 2.0 Hz, 2 H), 7.54-7.48 (m, 6 H), 7.47-7.44 (m, 4 H), 7.41 (d, J = 4.4 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃): δ 151.0 (2 *C*H), 149.4 (2 C), 145.2 (2 C), 137.8 (2

C), 137.3 (2 C), 132.2 (2 CH), 129.5 (4 CH), 128.8 (6 CH), 128.1 (2 C), 126.2 (2 C), 124.3 (2 CH), 122.8 (2 CH); **HRMS (EI)** calcd for: C₃₀H₁₈N₂Br₂ 563.9831, found: 563.9831; **IR** (KBr, cm⁻¹): 2924, 2854, 1489, 1450, 864, 764, 702.

4,4'-Bis(4-bromophenyl)-8,8'-dimethyl-6,6'-biquinoline (5kc)

Yellow solid; m.p. 223-225°C; ¹H NMR (400 MHz, CDCl₃): δ 8.94 (d, *J* = 4.4 Hz, 2 H), 7.85 (s, 2 H), 7.82 (s, 2 H), 7.65 (d, *J* = 8.0 Hz, 4 H), 7.35 (d, *J* = 8.4 Hz, 4 H), 7.31 (d, *J* = 4.0 Hz, 2 H), 2.91 (s, 6 H); ¹³C NMR (100 MHz, CDCl₃): δ148.8 (2 *C*H), 147.6 (C), 147.3 (C), 138.4 (2 C), 138.3 (2 C), 137.2 (2 C), 131.8 (4

CH), 131.2 (4 CH), 129.2 (2 CH), 126.6 (2 C), 122.8 (2 C), 121.9 (2 CH), 121.5 (2 CH), 18.8 (2 CH₃); **HRMS (EI)** calcd for: C₃₂H₂₂Br₂N₂ 592.0150, found:592.0162; **IR** (KBr, cm⁻¹): 2916, 2854, 1589, 1481, 864, 818, 725.

8,8'-Dimethyl-4,4'-dipentyl-6,6'-biquinoline (5kd)

Brown oil; ¹**H NMR** (400 MHz, CDCl₃): δ 8.83 (d, *J* = 4.4 Hz, 2 H), 8.14-8.13 (m, 2 H), 7.90-7.89 (m, 2 H), 7.27 (d, *J* = 4.4 Hz, 2 H), 3.13 (t, *J* = 7.6 Hz, 4 H), 2.91 (s, 6 H), 1.86-1.78 (m, 4 H), 1.46-1.36 (m, 8 H),0.93-0.89 (m, 6 H); ¹³**C NMR** (100 MHz, CDCl₃):

δ 149.1 (2 C), 149.0 (2 CH), 146.9 (2 C), 138.4 (2 C), 138.3 (2 C), 129.2 (2 CH), 127.7 (2 C), 121.1 (2 CH), 120.1 (2 CH), 34.4 (2 CH₂), 31.8 (2 CH₂), 29.9 (2 CH₂), 22.5 (2 CH₂), 18.9 (2 CH₃), 14.0 (2 CH₃); **HRMS (EI)** calcd for: C₃₀H₃₆N₂ 424.2878, found: 424.2869; **IR** (KBr, cm⁻¹): 3024, 2924, 2852, 1589, 1504, 1458, 864, 732.

3,8,8'-Trimethyl-4-phenyl-4'-(*o*-tolyl)-6,6'-biquinoline (5ke)

Yellow solid; m.p. 185-187 °C; ¹H NMR (400 MHz, CDCl₃): 8.82 (s, 2 H), δ 7.68 (s, 2 H), 7.48-7.46 (m, 6 H), 7.35 (d, *J* = 1.6 Hz, 2 H), 7.19-7.17 (m, 4 H), 2.85 (s, 6 H), 2.23 (s, 6 H); ¹³C NMR (100

MHz, CDCl₃): δ151.4 (2 *C*H), 146.7 (2 C), 145.4 (2 C), 138.4 (2 C), 137.3 (2 C), 137.0 (2 C), 129.2 (4 *C*H), 128.6 (4 *C*H), 128.2 (2 *C*H), 128.2 (2 C), 127.7 (2 *C*H), 127.6 (2 C), 122.3 (2 *C*H), 18.5 (2 *C*H₃), 17.6 (2 *C*H₃); **HRMS (EI)** calcd for: C₃₄H₂₈N₂ 464.2252, found: 464.2229; **IR** (KBr, cm⁻¹): 2924, 2854, 1489, 1442, 864, 702.

3,8,8'-Trimethyl-4-phenyl-4'-(o-tolyl)-6,6'-biquinoline (5kf')

Brown solid; m.p. 186-188 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.96 (dd, *J* = 4.4, 2.0 Hz, 2 H), 8.22 (dd, *J* = 8.4, 2.0 Hz, 2 H), 7.96-7.95 (m, 4 H), 7.44 (dd, *J* = 8.4, 4.4 Hz, 2 H), 2.91 (s, 6 H); ¹³C NMR (100 MHz, CDCl₃): δ149.4

(2 CH), 146.9 (2 C), 138.2 (2 C), 137.7 (2 C), 136.7 (2 CH), 129.4 (2 CH), 128.5 (2 C),

124.0 (2 CH), 121.4 (2 CH), 18.4 (2 CH₃); **HRMS (EI)** calcd for: C₂₀H₁₆N₂ 284.1308, found: 284.1308 ; **IR (**KBr, cm⁻¹): 2924, 2854, 1496, 1373, 864, 779, 702.

1H and 13C NMR Spectra

¹H and ¹³C NMR spectra of compound **3ba**

¹H and ¹³C NMR spectra of compound **3ca**

¹H and ¹³C NMR spectra of compound **3da**

10 ppm 150 140 130

¹H and ¹³C NMR spectra of compound **3ea**

¹H and ¹³C NMR spectra of compound **3fa**

¹H and ¹³C NMR spectra of compound **3ga**

¹H and ¹³C NMR spectra of compound **3ha'**

$^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound $\boldsymbol{3ab}$

¹H and ¹³C NMR spectra of compound **3ac**

¹H and ¹³C NMR spectra of compound **3ad**

¹H and ¹³C NMR spectra of compound **3ae**

¹H and ¹³C NMR spectra of compound **3af**'

¹H and ¹³C NMR spectra of compound **3ag'**

¹H and ¹³C NMR spectra of compound **4ja**

¹H and ¹³C NMR spectra of compound **4jc**

¹H and ¹³C NMR spectra of compound **4jd**

¹H and ¹³C NMR spectra of compound **5ka**

¹H and ¹³C NMR spectra of compound **5la**

$^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound $\mathbf{5kc}$

¹H and ¹³C NMR spectra of compound **5kd**

$^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of compound $\mathbf{5ke}$

¹H and ¹³C NMR spectra of compound **5kf**'

X-ray Crystallographic Analysis:

ORTEP diagram of compound **3af**'.

Table 55. Crystal data and structure renn	The first $101 \text{ MO}_{130929} \text{ OF}$	vi, Jai [*] .	
Identification code	mo_150929_0m		
Empirical formula	C20 H20 B F4 N		
Formula weight	361.18		
Temperature	296(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P -1		
Unit cell dimensions	a = 9.0489(7) Å	$\alpha = 78.224(2)^{\circ}$.	
	b = 10.2453(9) Å	$\beta = 65.746(2)^{\circ}.$	
	c = 10.8052(9) Å	$\gamma = 73.570(2)^{\circ}$.	
Volume	871.59(13) Å ³		
Ζ	2		
Density (calculated)	1.376 Mg/m ³		
Absorption coefficient	0.109 mm ⁻¹		
F(000)	376		
Crystal size	0.12 x 0.10 x 0.04 mm ³		
Theta range for data collection	2.078 to 26.448°.		
Index ranges	-11<=h<=10, -6<=k<=12	, - 13<=l<=13	
Reflections collected	12209		
Independent reflections	3512 [R(int) = 0.0339]		
Completeness to theta = 25.242°	98.3 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.9485 and 0.9064		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	3512 / 255 / 283		
Goodness-of-fit on F ²	0.907		
Final R indices [I>2sigma(I)]	R1 = 0.0830, wR2 = 0.25	07	
R indices (all data)	R1 = 0.1773, wR2 = 0.29	90	
Extinction coefficient	0.012(9)		
Largest diff. peak and hole	0.365 and -0.542 e.Å ⁻³		

Table S5. Crystal data and structure refinement for MO_150929_0M, 3af'.

ORTEP diagram of compound 4ja.

Table So. Crystal data and structure	reminimized for 140443L1_a	, +ја.		
Identification code	140445LT_a			
Empirical formula	C48 H36 B2 F8 N2			
Formula weight	814.41			
Temperature	100(2) K			
Wavelength	1.54178 Å			
Crystal system	Monoclinic			
Space group	P 21/c			
Unit cell dimensions	a = 13.2275(13) Å	<i>α</i> = 90°.		
	b = 12.9049(11) Å	β=110.482(6)°.		
	c = 12.2015(11) Å	$\gamma = 90^{\circ}$.		
Volume	1951.1(3) Å ³			
Z	2			
Density (calculated)	1.386 Mg/m ³			
Absorption coefficient	0.897 mm ⁻¹			
F(000)	840			
Crystal size	0.17 x 0.15 x 0.15 mm	l ³		
Theta range for data collection	3.567 to 66.746°.			
Index ranges	-15<=h<=15, -15<=k<	<=13, -14<=l<=14		
Reflections collected	13094			
Independent reflections	3356 [R(int) = 0.1157]]		
Completeness to theta = 67.679°	95.0 %			
Absorption correction	Semi-empirical from e	Semi-empirical from equivalents		
Max. and min. transmission	0.9492 and 0.6817	0.9492 and 0.6817		
Refinement method	Full-matrix least-squar	Full-matrix least-squares on F ²		
Data / restraints / parameters	3356 / 0 / 271	3356 / 0 / 271		
Goodness-of-fit on F ²	0.670			
Final R indices [I>2sigma(I)]	R1 = 0.0857, wR2 = 0	.2190		
R indices (all data)	R1 = 0.2009, wR2 = 0.2861			

Table S6.Crystal data and structure refinement for 140445LT_a, 4ja.

Extinction coefficient Largest diff. peak and hole n/a 0.270 and -0.166 e.Å⁻³

ORTEP diagram of compound 5ka

Identification code	a16581a	
Empirical formula	C32 H24 N2	
Formula weight	436.53	
Temperature	200(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P b c a	
Unit cell dimensions	a = 7.917(6) Å	$\alpha = 90^{\circ}$.
	b = 22.675(14) Å	$\beta = 90^{\circ}$.
	c = 25.49(2) Å	$\gamma = 90^{\circ}$.
Volume	4577(6) Å ³	
Z	8	
Density (calculated)	1.267 Mg/m ³	
Absorption coefficient	0.074 mm ⁻¹	
F(000)	1840	
Crystal size	0.25 x 0.23 x 0.02 mm ³	
Theta range for data collection	1.97 to 25.05°.	
Index ranges	-8<=h<=9, -26<=k<=17, -30<=l<=26	
Reflections collected	19221	
Independent reflections	4006 [R(int) = 0.1883]	
Completeness to theta = 25.05°	98.6 %	
Absorption correction	multi-scan	
Max. and min. transmission	0.9985 and 0.9818	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4006 / 0 / 307	
Goodness-of-fit on F ²	0.915	
Final R indices [I>2sigma(I)]	R1 = 0.0946, wR2 = 0.1475	
R indices (all data)	R1 = 0.3434, $wR2 = 0.2222$	
Largest diff. peak and hole	0.261 and -0.249 e.Å ⁻³	

Table S7. Crystal data and structure refinement for a16581a, **5ka**.