Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting information

Restore the osteogenic activity of bacterial debris contaminated titanium by doping of magnesium

Yaochao Zhao^{†, #}, Huiliang Cao^{‡, #}, Jiaxing Wang[†], Hui Qin[†], Li Bin[†], Donghui Wang[‡], Fanhao Meng[‡], Xianlong Zhang^{†,*}, Xuanyong Liu ^{‡,*}

† Department of Orthopedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China

‡ State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China

Corresponding

*E-mail: zhangxianl197826@163.com (X. Zhang); xyliu@mail.sic.ac.cn (X. Liu);

[#]These authors contributed equally.

Figure S1. Cell proliferation of the human mesenchymal stem cells (hBMSCs) seeded on Ti with the presence of different concentration of LPS. **P<0.01.

Figure S2. Extracellular matrix mineralization after 14 days of culture with the presence of different concentration of LPS was determined by alizarin red staining. *P < 0.05.

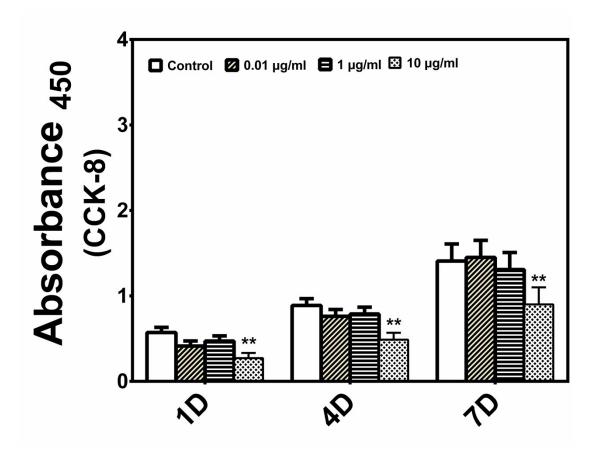


Figure S1

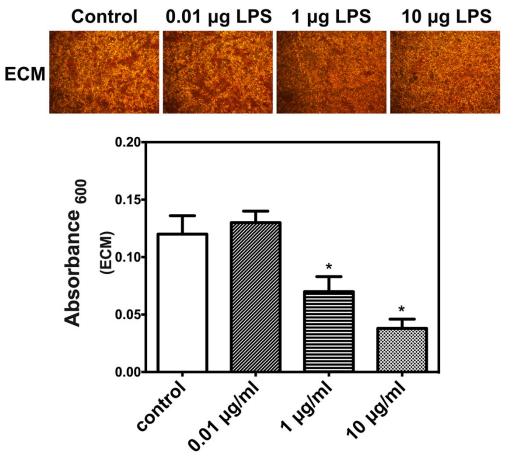


Figure S2