## Supporting Information

## Hirundigenin type C<sub>21</sub> steroidal glycosides from *Cynanchum stauntonii* and their anti-inflammatory activity

Chang-zhi Lai<sup>a,#</sup>, Hai-bin Liu<sup>b,#</sup>, Jian-xin Liu<sup>c, d</sup>, Qin Ouyang<sup>e</sup>, Shu-wen Pang<sup>a</sup>. Hua Zhou<sup>c</sup>, Hai-yan Tian<sup>a</sup>, Liang Liu<sup>c</sup>, Xin-sheng Yao<sup>a, \*</sup>, and Jin-shan Tang<sup>a, \*</sup>

<sup>a</sup> Institutes of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan
University, Guangzhou 510632, P. R. China. Email: <u>tyaoxs@jnu.edu.cn</u>; <u>gztangjinshan@126.com</u>; Fax:
+86-20-85221559; Tel: +86-20-85220785.

<sup>b</sup> Guangdong Lewwin Pharmaceutical Research Institute CO., Ltd, Guangzhou, P. R. China;

<sup>c</sup> State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, P. R. China;

<sup>d</sup> College of Pharmacy, Hunan University of Medicine, Huaihua 418000, P. R. China;

<sup>e</sup> School of Pharmacy, The Third Military Medical University, Chongqing, 400038, PR China.

<sup>#</sup> contributed equally to this work

## The List of Cotents

| NO         | Cotent                                                             |
|------------|--------------------------------------------------------------------|
| Figure S1  | <sup>1</sup> H NMR spectrum of compound <b>1</b>                   |
| Figure S2  | <sup>13</sup> C NMR spectrum of compound <b>1</b>                  |
| Figure S3  | <sup>1</sup> H- <sup>1</sup> H COSY spectrum of compound <b>1</b>  |
| Figure S4  | HSQC spectrum of compound <b>1</b>                                 |
| Figure S5  | HMBC spectrum of compound 1                                        |
| Figure S6  | ROESY spectrum of compound 1                                       |
| Figure S7  | <sup>1</sup> H NMR spectrum of compound <b>2</b>                   |
| Figure S8  | $^{13}$ C NMR spectrum of compound 2                               |
| Figure S9  | <sup>1</sup> H- <sup>1</sup> H COSY spectrum of compound <b>2</b>  |
| Figure S10 | HSQC spectrum of compound 2                                        |
| Figure S11 | HMBC spectrum of compound 2                                        |
| Figure S12 | ROESY spectrum of compound 2                                       |
| Figure S13 | <sup>1</sup> H NMR spectrum of compound <b>3</b>                   |
| Figure S14 | $^{13}$ C NMR spectrum of compound <b>3</b>                        |
| Figure S15 | <sup>1</sup> H- <sup>1</sup> H COSY spectrum of compound <b>3</b>  |
| Figure S16 | HSQC spectrum of compound <b>3</b>                                 |
| Figure S17 | HMBC spectrum of compound <b>3</b>                                 |
| Figure S18 | ROESY spectrum of compound <b>3</b>                                |
| Figure S19 | <sup>1</sup> H NMR spectrum of compound <b>4</b>                   |
| Figure S20 | <sup>13</sup> C NMR spectrum of compound <b>4</b>                  |
| Figure S21 | <sup>1</sup> H- <sup>1</sup> H COSY spectrum of compound <b>4</b>  |
| Figure S22 | HSQC spectrum of compound 4                                        |
| Figure S23 | HMBC spectrum of compound 4                                        |
| Figure S24 | ROESY spectrum of compound 4                                       |
| Figure S25 | <sup>1</sup> H NMR spectrum of compound <b>5</b>                   |
| Figure S26 | <sup>13</sup> C NMR spectrum of compound <b>5</b>                  |
| Figure S27 | <sup>1</sup> H- <sup>1</sup> H COSY spectrum of compound <b>5</b>  |
| Figure S28 | HSQC spectrum of compound 5                                        |
| Figure S29 | HMBC spectrum of compound 5                                        |
| Figure S30 | <sup>1</sup> H NMR spectrum of compound <b>6</b>                   |
| Figure S31 | $^{13}$ C NMR spectrum of compound <b>6</b>                        |
| Figure S32 | $^{1}$ H- $^{1}$ H COSY spectrum of compound <b>6</b>              |
| Figure S33 | HSQC spectrum of compound 6                                        |
| Figure S34 | HMBC spectrum of compound 6                                        |
| Figure S35 | ROESY spectrum of compound 6                                       |
| Figure S36 | <sup>1</sup> H NMR spectrum of compound $2a$                       |
| Figure S37 | <sup>13</sup> C NMR spectrum of compound <b>2a</b>                 |
| Figure S38 | <sup>1</sup> H- <sup>1</sup> H COSY spectrum of compound <b>2a</b> |
| Figure S39 | HSQC spectrum of compound 2a                                       |

| Figure S40 | HMBC spectrum of compound 2a                                                  |
|------------|-------------------------------------------------------------------------------|
| Figure S41 | <sup>1</sup> H NMR spectrum of compound <b>2b</b>                             |
| Figure S42 | <sup>13</sup> C NMR spectrum of compound <b>2b</b>                            |
| Figure S43 | <sup>1</sup> H- <sup>1</sup> H COSY spectrum of compound <b>2b</b>            |
| Figure S44 | HSQC spectrum of compound <b>2b</b>                                           |
| Figure S45 | HMBC spectrum of compound <b>2b</b>                                           |
| Figure S46 | <sup>1</sup> H NMR spectrum of compound <b>2d</b>                             |
| Figure S47 | <sup>13</sup> C NMR spectrum of compound <b>2d</b>                            |
| Figure S48 | <sup>1</sup> H NMR spectrum of compound <b>2e</b>                             |
| Figure S49 | <sup>13</sup> C NMR spectrum of compound <b>2e</b>                            |
| Figure S50 | <sup>1</sup> H NMR spectrum of compound <b>2f</b>                             |
| Figure S51 | $^{13}$ C NMR spectrum of compound <b>2f</b>                                  |
| Figure S52 | <sup>1</sup> H NMR spectrum of compound <b>6a</b>                             |
| Figure S53 | <sup>13</sup> C NMR spectrum of compound <b>6a</b>                            |
| Figure S54 | <sup>1</sup> H- <sup>1</sup> H COSY spectrum of compound <b>6a</b>            |
| Figure S55 | HSQC spectrum of compound 6a                                                  |
| Figure S56 | HMBC spectrum of compound <b>6a</b>                                           |
| Figure S57 | <sup>1</sup> H NMR spectrum of compound <b>6b</b>                             |
| Figure S58 | <sup>13</sup> C NMR spectrum of compound <b>6b</b>                            |
| Figure S59 | <sup>1</sup> H- <sup>1</sup> H COSY spectrum of compound <b>6b</b>            |
| Figure S60 | HSQC spectrum of compound <b>6b</b>                                           |
| Figure S61 | HMBC spectrum of compound <b>6b</b>                                           |
| Figure S62 | <sup>1</sup> H NMR spectrum of compound <b>6d</b>                             |
| Figure S63 | <sup>13</sup> C NMR spectrum of compound <b>6d</b>                            |
| Figure S64 | <sup>1</sup> H NMR spectrum of compound <b>6e</b>                             |
| Figure S65 | <sup>13</sup> C NMR spectrum of compound <b>6e</b>                            |
| Figure S66 | <sup>1</sup> H NMR spectrum of compound <b>6f</b>                             |
| Figure S67 | <sup>13</sup> C NMR spectrum of compound <b>6f</b>                            |
| Table S1   | <sup>1</sup> H NMR data for the aglycone part of compounds <b>2a-2f,6a-6f</b> |
| Table S2   | <sup>1</sup> H NMR data for the sugar chains of compounds <b>2a-2f,6a-6f</b>  |
| Table S3   | <sup>13</sup> C NMR data for compounds <b>2a-2f,6a-6f</b>                     |



Figure S2 <sup>13</sup>C NMR spectrum of compound **1** 



Figure S4 HSQC spectrum of compound  $\mathbf{1}$ 











Figure S8 <sup>13</sup>C NMR spectrum of compound 2







Figure S11 HMBC spectrum of compound 2







Figure S14 <sup>13</sup>C NMR spectrum of compound **3** 





Figure S16 HSQC spectrum of compound 3







Figure S20 <sup>13</sup>C NMR spectrum of compound 4



Figure S21 <sup>1</sup>H-<sup>1</sup>H COSY spectrum of compound **4** 



Figure S22 HSQC spectrum of compound 4











Figure S26<sup>13</sup>C NMR spectrum of compound **5** 



Figure S27 <sup>1</sup>H-<sup>1</sup>H COSY spectrum of compound **5** 



Figure S28 HSQC spectrum of compound 5







Figure S30 <sup>1</sup>H NMR spectrum of compound **6** 



Figure S31 <sup>13</sup>C NMR spectrum of compound **6** 



Figure S32 <sup>1</sup>H-<sup>1</sup>H COSY spectrum of compound **6** 







Figure S35 ROESY spectrum of compound 6



Figure S36 <sup>1</sup>H NMR spectrum of compound **2a** 



Figure S37 <sup>13</sup>C NMR spectrum of compound **2a** 



Figure S38 <sup>1</sup>H-<sup>1</sup>H COSY spectrum of compound **2a** 











Figure S42 <sup>13</sup>C NMR spectrum of compound **2b** 



Figure S43 <sup>1</sup>H-<sup>1</sup>H COSY spectrum of compound **2b** 



Figure S44 HSQC spectrum of compound 2b



Figure S46 <sup>1</sup>H NMR spectrum of compound **2d** 



Figure S48 <sup>1</sup>H NMR spectrum of compound **2e** 



Figure S50 <sup>1</sup>H NMR spectrum of compound **2f** 



Figure S52 <sup>1</sup>H NMR spectrum of compound **6a** 









Figure S57 <sup>1</sup>H NMR spectrum of compound **6b** 



Figure S58 <sup>13</sup>C NMR spectrum of compound **6b** 







Figure S62 <sup>1</sup>H NMR spectrum of compound **6d** 



Figure S64 <sup>1</sup>H NMR spectrum of compound **6e** 



Figure S66 <sup>1</sup>H NMR spectrum of compound **6f** 



Figure S67 <sup>13</sup>C NMR spectrum of compound **6f** 

| positon | <sup>a</sup> 2a   | <sup>a</sup> 2b   | <sup>b</sup> 2d   | <sup>b</sup> 2e                  | <sup>b</sup> 2f                  | <sup>а</sup> ба          | <sup>а</sup> бb                     | <sup>b</sup> 6c                  | <sup>b</sup> 6d                  | <sup>b</sup> 6e                                 | <sup>b</sup> 6f                 |
|---------|-------------------|-------------------|-------------------|----------------------------------|----------------------------------|--------------------------|-------------------------------------|----------------------------------|----------------------------------|-------------------------------------------------|---------------------------------|
| 1       | 2.26,m/1.71,<br>m | 1.67,m/1.0<br>6,m | 1.77,m/1.2<br>2,m | 1.76,m/1.2<br>1,td(14.0,3<br>.3) | 1.77,m/1.2<br>1,td(14.1,3<br>.5) | 1.72,m/0.9<br>7,m        | 1.71,m/1.0<br>5,td(14.5,3<br>.7)    | 1.71,m/1.1<br>9,td(13.8,3<br>.6) | 1.78,m/1.2<br>2,m                | 1.76,dt(13.<br>6,3.6)/1.22<br>,td(13.9,4.<br>0) | 1.76,m/1.2<br>2,m               |
| 2       | 2.06,d(10.1)/     | 2.04,m/1.6        | 2.01,m/1.5        | 2.00,bd(12.                      | 2.00,m/1.2                       | 2.07,m/1.7               | 2.05,m/1.7                          | 1.95,m/1.5                       | 2.00,m/1.6                       | 2.00,m/1.6                                      | 2.00,m/1.6                      |
|         | 1.69,d(10.1)      | 6,m               | 8,m               | 3)/1.58,m                        | 9,m                              | 3,m                      | 1,m                                 | 8,m                              | 2,m                              | 1,m                                             | 1,m                             |
| 3       | 3.76,m            | 3.76,m            | 3.63,m            | 3.61,m                           | 3.61,m                           | 3.72,m                   | 3.72,m                              | 3.58,m                           | 3.60,m                           | 3.60,m                                          | 3.60,m                          |
| 4       | 2.57,m/2.28.<br>m | 2.54,m/2.3<br>3,m | 2.43,m/2.2<br>0,m | 2.43,bd(14.<br>0)/2.21,m         | 2.43,bd(14.<br>4)/2.23,m         | 2.62,m/2.3<br>6,m        | 2.59,bd(13.<br>8)/2.39,bd(<br>13.3) | 2.44,m/1.7<br>6,m                | 2.48,m/2.2<br>5,m                | 2.47,dq(13.<br>7,2.1)/2.25<br>,m                | 2.47,d<br>like(14.1)/<br>2.25,m |
| 5       |                   |                   |                   |                                  |                                  |                          |                                     |                                  |                                  |                                                 |                                 |
| 6       | 5.45,m            | 5.37.m            | 5.34,m            | 5.34,br s                        | 5.34,q(3.1)                      | 5.43,t(2.6)              | 5.43,t(2.5)                         | 5.32,q(2.3)                      | 5.35,q(2.3)                      | 5.35,q(2.4)                                     | 5.35,q(2.4)                     |
| 7       | 2.32,m/2.26,<br>m | 2.27,m/2.1<br>7,m | 2.98,m/2.5<br>9,m | 2.97,m/bd<br>(21.0)              | 2.99,m/2.5<br>9,bd(21.1)         | 2.30,bd(13.<br>1)/2.26,m | 2.27,m/2.1<br>5,m                   | 2.93,m/2.5<br>8,m                | 2.98,dt(21.<br>0,3.7)/2.59<br>,m | 3.01,m/2.5<br>8,d<br>like(21.3)                 | 2.99,m/2.5<br>8,d<br>like(21.3) |
| 8       | 1.94,m            | 2.03,m            |                   |                                  |                                  | 1.94,m                   | 1.69,m                              |                                  |                                  |                                                 |                                 |
| 9       | 1.47,m            | 1.61,d(1.7)       | 2.11,m            | 2.10, t(8.2)                     | 2.11.t(8.3)                      | 1.47,m                   | 1.61,m                              | 2.07,m                           | 2.11,m                           | 2.10,bt(8.8<br>)                                | 2.10,m                          |
| 10      |                   |                   |                   |                                  |                                  |                          |                                     |                                  |                                  |                                                 |                                 |
| 11      | 1.49,m/1.47,      | 1.60,m/1.3        | 1.81,m/1.3        | 1.80,m/1.3                       | 1.81,m/1.3                       | 1.49,m/1.4               | 1.61,m/1.3                          | 1.79,m/1.3                       | 1.81,m/1.3                       | 1.81,m/1.3                                      | 1.81,m/1.3                      |
| 11      | m                 | 7,m               | 6,m               | 5,m                              | 5,m                              | 8,m                      | 7,m                                 | 3,m                              | 7,m                              | 6,m                                             | 6,m                             |
| 12      | 1.57,m/1.43,      | 2.07,m/1.7        | 2.06,m/1.4        | 2.06,bd(12.                      | 2.06,m/1.4                       | 1.57,m/1.4               | 2.06,m/1.7                          | 2.02,m/1.4                       | 2.06,m/1.4                       | 2.06,dt                                         | 2.06,m/1.4                      |
| 12      | m                 | 2,m               | 9,m               | 3)/1.49,m                        | 8,td(14.1,3                      | 3,m                      | 1,m                                 | 7,m                              | 9,m                              | like(12.5,3.                                    | 8,m                             |

Table S1 Assignment of <sup>1</sup>H NMR data for the aglycone part of compounds **2a-2f,6a-6f** in 600MHz ( $\delta$  in ppm, *J* values in Hz)

|    |                                       |                                      |                                  |                                        | .5)                                             |                                       |                                  |                                                 |                                                 | 3)/1.48,td(                                     |                       |
|----|---------------------------------------|--------------------------------------|----------------------------------|----------------------------------------|-------------------------------------------------|---------------------------------------|----------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------|
|    |                                       |                                      |                                  |                                        |                                                 |                                       |                                  |                                                 |                                                 | 13.1,3.4)                                       |                       |
| 13 |                                       |                                      |                                  |                                        |                                                 |                                       |                                  |                                                 |                                                 |                                                 |                       |
| 14 |                                       |                                      |                                  |                                        |                                                 |                                       |                                  |                                                 |                                                 |                                                 |                       |
| 15 | 4.31,dd(10.3,<br>2.3)/3.90,q(4<br>.3) | 4.21,dd(10.<br>5,2.5)/3.95<br>,m     | 4.21,dd(10.<br>9,1.2)/3.86<br>,m | 4.21,d(11.1<br>)/3.86,dd(1<br>1.1,4.3) | 4.21,dd(11.<br>1,1.2)/3.86<br>,dd(10.8,4.<br>6) | 4.31,dd(10.<br>3,2.2)/3.88<br>,q(5.4) | 4.21,dd(10.<br>3,2.4)/3.95<br>,m | 4.17,dd(10.<br>9,1.0)/3.82<br>,dd(10.8,4.<br>4) | 4.21,dd(11.<br>1,1.2)/3.86<br>,dd(11.0,4.<br>6) | 4.20,dd(10.<br>9,1.2)/3.86<br>,dd(10.9,4.<br>4) | 4.20,dd(10.<br>9,1.2) |
| 16 | 4.75,m                                | 4.62,m                               | 4.76,m                           | 4.76,m                                 | 4.76,m                                          | 4.74,m                                | 4.62,m                           | 4.73,m                                          | 4.77,m                                          | 4.76,m                                          | 4.76,m                |
| 17 | 2.95,d(8.5)                           | 2.74,d(7.8)                          | 2.76,d(7.9)                      | 2.76,d(7.8)                            | 2.75,d(8.0)                                     | 2.94,d(8.0)                           | 2.74,d(8.0)                      | 2.72,d(7.9)                                     | 2.75,d(8.0)                                     | 2.75,d(7.9)                                     | 2.75,d(7.9)           |
| 18 | 4.81,d(9.0)/3<br>.60,d(9.0)           | 4.02,d(8.6)<br>/3.98,dd(7.<br>0,1.6) | 3.92,br s                        | 3.92,br s                              | 3.92,br s                                       | 4.81,d(8.8)<br>/3.61,d(8.8<br>)       | 4.01,d(8.5)<br>/3.97,m           | 3.88,br s                                       | 3.92,br s                                       | 3.92,br s                                       | 3.92,br s             |
| 19 | 0.91,s                                | 0.87,s                               | 0.84,s                           | 0.84,s                                 | 0.84,s                                          | 0.92,s                                | 0.88,s                           | 0.80,s                                          | 0.84,s                                          | 0.84,s                                          | 0.84,s                |
| 20 |                                       |                                      |                                  |                                        |                                                 |                                       |                                  |                                                 |                                                 |                                                 |                       |
| 21 | 1.54,s                                | 1.58,s                               | 1.55,s                           | 1.54,s                                 | 1.54,s                                          | 1.53,s                                | 1.59,s                           | 1.51,s                                          | 1.59,s                                          | 1.54,s                                          | 1.54,s                |
| 22 | 3.52,s                                | 3.45,s                               |                                  |                                        |                                                 | 3.51,s                                | 3.45,s                           |                                                 |                                                 |                                                 |                       |

<sup>a</sup>Spectra in pyding-d5. <sup>b</sup>Spectra in CDCl<sub>3</sub>.

Table S2 Assignment of <sup>1</sup>H NMR data for the sugar chains of compounds **2a-2f,6a-6f** in 600MHz ( $\delta$  in ppm, *J* values in Hz)

| position | <sup>a</sup> 2a | <sup>a</sup> 2b | <sup>b</sup> 2d | <sup>b</sup> 2e | <sup>b</sup> 2f | <sup>a</sup> 6a | <sup>a</sup> 6b | <sup>b</sup> 6c | <sup>b</sup> 6d | <sup>b</sup> 6e |   | <sup>b</sup> 6f |
|----------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|---|-----------------|
|          | M-can           | M-can           | can             | can             | can             | M-the           | M-the           | the             | the             | the             |   | the             |
| 1'       | 4.79,dd(9.6     | 4.78,dd(9.7     | 4.66,dd(9.7     | 4.63,d(9.5)     | 4.63,dd(9.9     | 4.67,d(7.8)     | 4.67,d(7.8)     | 4.34,d(7.8)     | 4.36,d(7.8)     | 4.35            | , | 4.35,d(7.8)     |

|         | ,1.8)                | ,1.7)                | ,2.0)             |                   | ,1.7)                |                          |                          |             |                   | d(7.8)                           |                      |
|---------|----------------------|----------------------|-------------------|-------------------|----------------------|--------------------------|--------------------------|-------------|-------------------|----------------------------------|----------------------|
| 2'      | 2,43,m/1.7<br>8,m    | 2.41,m/1.6<br>9,m    | 2.20,m/1.6<br>8,m | 2.21,m/1.6<br>3,m | 2.22,m/1.6<br>2,m    | 3.49,m                   | 3.49,m                   | 3.41,m      | 3.43,m            | 3.43,t(8.7)                      | 3.43,m               |
| 3'      | 3.56,m               | 3.53,m               | 3.64,m            | 3.62,m            | 3.63,m               | 3.28,m                   | 3.28,m                   | 3.12,q(8.9) | 3.27,t(8.7)       | 3.26,d(8.9)                      | 3.26,d(8.9)          |
| 4'      | 3.50,m               | 3.49,m               | 3.14,m            | 3.01,m            | 3.0,d(8.7)           | 3.58,overla<br>p         | 3.58,overla<br>p         | 3.20,t(8.9) | 3.33,m            | 3.33,m                           | 3.33,t(9.3)          |
| 5'      | 3.51,m               | 3.5,d(4.3)           | 3.31,m            | 3.32,m            | 3.33,m               | 3.53,m                   | 3.53,m                   | 3.34,m      | 3.38.m            | 3.36,m                           | 3.36, m              |
| 6'      | 1.43,d(5.3)          | 1.42,d(5.4)          | 1.36.d(6.1)       | 1.30,d(6.0)       | 1.28,bs              | 1.36,d(6.3)              | 1.36,d(6.3)              | 1.30,d(6.1) | 1.31,d(5.9)       | 1.31,d(6.0)                      | 1.31,d(5.9)          |
| 2'-OCH3 |                      |                      |                   |                   |                      | 3.80,s                   | 3.79,s                   |             |                   |                                  |                      |
| 3'-OCH3 | 3.53,s               | 3.51,s               |                   |                   |                      | 3.71,s                   | 3.70,s                   | 3.64,s      | 3.65,s            | 3.64,s                           | 3.64,s               |
|         | M-digt               | M-digt               | digt              | digt              | digt                 | M-digt                   | M-digt                   | digt        | digt              | digt                             | digt                 |
| 1"      | 5.25,dd(9.8          | 5.25,dd(9.6          |                   | 196 1(0 6)        | 4.84,dd(9.8          | 5.24,dd(9.8              | 5.23,dd(9.8              |             | 5.01,dd(9.7       | 4.99,dd(9.7                      | 4.99,dd(9.7          |
| 1       | ,1.8)                | ,1.7)                |                   | 4.80,0(9.0)       | ,2.1)                | ,1.7)                    | ,1.7)                    |             | ,1.2)             | ,2.0)                            | ,2.0)                |
| 2"      | 2.28,m/1.7<br>5,m    | 2.27,m/1.7<br>3,m    |                   | 2.21,m/1.7<br>9,m | 2.23,m/1.7<br>7,m    | 2.31,bd(13.<br>1)/1.81,m | 2.31,bd(13.<br>1)/1.81,m |             | 2.14,m/1.7<br>4,m | 2.15,bd<br>like(13.9)/<br>1.71,m | 2.15,m/1.7<br>1,m    |
| 3"      | 3.86,m               | 3.85,m               |                   | 4.16,br s         | 4.10,d<br>like(3.2)  | 4.05,qd(2.8<br>)         | 4.05,qd(2.8<br>)         |             | 4.14,m            | 2.84,m                           | 3.86,dd(9.9<br>,4.5) |
| 4"      | 3.41,dd(9.7<br>,2.4) | 3.41,dd(9.5<br>,2.6) |                   | 3.38,d(9.0)       | 3.30,dd(9.5<br>,3.1) | 3.45,dd(9.5<br>,2.6)     | 3.45,dd(9.5<br>,2.6)     |             | 3.35,m            | 3,23,m                           | 3.23,dd(9.0<br>,3.1) |
| 5"      | 4.15,m               | 4.15,m               |                   | 3.88,m            | 3.90,m               | 4.18,m                   | 4.18,m                   |             | 3.78,m            | 3.64,m                           | 3.89,m               |
| 6"      | 1.34,d(6.2)          | 1.34,d(6.0)          |                   | 1.55,d(5.8)       | 1.29,bs              | 1.37,d(4.3)              | 1.37,d(4.3)              |             | 1.34,d(6.3)       | 1.28,d<br>(2.4)                  | 1.28,d(6.4)          |
| 3"-OCH3 | 3.55,s               | 3.55,s               |                   |                   |                      | 3.59,s                   | 3.59,s                   |             |                   |                                  |                      |
|         | M-cym                | M-cym                |                   |                   |                      | M-cym                    | M-cym                    |             |                   | cym                              | cym                  |
| 1'''    | 4.92,dd(4.8          | 4.92, overla         |                   |                   | 4.93,d(3.9)          | 5.05,dd(9.8              | 5.05,dd(9.8              |             |                   | 4.76 ,                           | 4.81,dd(9.8          |

|              | ,1.6)       | р           |  |             | ,1.6)            | ,1.6)            |  | dd(9.6,1.2) | ,2.0)        |
|--------------|-------------|-------------|--|-------------|------------------|------------------|--|-------------|--------------|
| 2"           | 2.34,m/1.3  | 2.33,m/1.7  |  | 2.34,bd(14. | 2.39,bd(12.      | 2.39,bd(12.      |  | 2.27,m/1.6  | 2.25,m/1.6   |
| 2            | 4,m         | 1,m         |  | 8)/1.75,m   | 8)/1.72,m        | 8)/1.72,m        |  | 3,m         | 5,m          |
| 3'''         | 3.76,m      | 3.75,d(4.1) |  | 3.66,m      | 3.86,qd(2.8<br>) | 3.86,qd(2.8<br>) |  | 3.65,m      | 3.74,q(2.7)  |
| <b>/</b> ''' | 3.04,dd(8.6 | 3.03,dd(8.7 |  | 3.28 m      | 3.39,dd(9.5      | 3.39,dd(9.5      |  | 3 22 m      | 3.26,dd(9.7  |
| 4            | ,2.8)       | ,2.9)       |  | 5.20,111    | ,2.7)            | ,2.7)            |  | 5.22.111    | ,3.1)        |
| 5'''         | 4.55,m      | 4.55,m      |  | 3.87,m      | 4.18,m           | 4.18,m           |  | 4.25,q(2.8) | 3.83,m       |
| 6'''         | 1.38,d(6.4) | 1.38,d(6.4) |  | 1.31,bs     | 1.34,d(6.2)      | 1.34,d(6.2)      |  | 1.29,d(2.5) | 1.24,d(6.3)  |
| 2'''-OCH3    | 3.35,s      | 3.34,s      |  |             |                  |                  |  |             |              |
| 3'''-OCH3    | 3.34,s      | 3.33,s      |  | 3.44,s      | 3.49,s           | 3.49,s           |  | 3.46,s      | 3.45,s       |
|              |             |             |  |             | M-dign           | M-dign           |  | dign        | dign         |
| 1""          |             |             |  |             | 5.14,d(3.5)      | 5.15,d(3.5)      |  |             | 5.01,bd(3.7) |
|              |             |             |  |             | 2.21,m/2.0       | 2.21,m/2.0       |  |             | 1.88,m/1.2   |
| 2            |             |             |  |             | 6,m              | 6,m              |  |             | 9,m          |
| 3''''        |             |             |  |             | 3.80,m           | 3.80,m           |  |             | 3.69,m       |
| 4''''        |             |             |  |             | 3.41,br s        | 3.41,br s        |  |             | 4.25,m       |
| 5""          |             |             |  |             | 4.18,m           | 4.18,m           |  |             | 4.01,bd(7.0) |
| 6''''        |             |             |  |             | 1.39,s           | 1.39,s           |  |             | 1.33,d(7.0)  |
| 3""-OCH3     |             |             |  |             | 3.28,s           | 3.28,s           |  |             | 3,41,s       |
| 4""-OCH3     |             |             |  |             | 3.58,s           | 3.58,s           |  |             |              |

<sup>a</sup>Spectra in pyding-d5. <sup>b</sup>Spectra in CDCl<sub>3</sub>

| position | <sup>a</sup> 2a | <sup>a</sup> 2b | <sup>b</sup> 2c | <sup>b</sup> 2d | <sup>b</sup> 2e | <sup>b</sup> 2f | <sup>a</sup> 6a | <sup>a</sup> 6b | <sup>b</sup> 6c | <sup>b</sup> 6d | <sup>b</sup> 6e | <sup>b</sup> 6f |
|----------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 1        | 36.5            | 37.4            | 36.4            | 36.3            | 36.3            | 36.3            | 36.5            | 37.4            | 36.3            | 36.3            | 36.3            | 36.3            |
| 2        | 29.7            | 30.0            | 31.9            | 29.7            | 29.7            | 29.7            | 29.8            | 30.1            | 29.8            | 29.7            | 29.7            | 29.7            |
| 3        | 77.3            | 77.0            | 71.3            | 77.2            | 77.2            | 77.2            | 78.5            | 78.2            | 78.3            | 78.1            | 78.1            | 78.1            |
| 4        | 38.6            | 39.0            | 42.1            | 38.5            | 38.5            | 38.5            | 38.8            | 39.1            | 38.6            | 38.5            | 38.5            | 38.5            |
| 5        | 140.0           | 140.2           | 140.8           | 140.6           | 140.7           | 140.7           | 140.0           | 140.1           | 140.3           | 140.3           | 140.3           | 140.4           |
| 6        | 121.8           | 120.8           | 120.2           | 120.1           | 120.1           | 120.1           | 121.9           | 120.9           | 120.5           | 120.3           | 120.3           | 120.3           |
| 7        | 27.1            | 25.5            | 25.4            | 25.3            | 25.3            | 25.3            | 27.1            | 25.5            | 25.4            | 25.3            | 25.3            | 25.3            |
| 8        | 38.5            | 37.8            | 105.1           | 104.9           | 104.9           | 104.9           | 38.5            | 37.9            | 105.0           | 104.6           | 104.9           | 104.9           |
| 9        | 42.1            | 44.8            | 44.8            | 44.7            | 44.7            | 44.7            | 42.1            | 44.8            | 44.7            | 44.7            | 44.7            | 44.7            |
| 10       | 38.5            | 37.2            | 37.5            | 37.7            | 37.7            | 37.7            | 38.5            | 37.2            | 37.7            | 37.6            | 37.6            | 37.6            |
| 11       | 19.2            | 20.8            | 20.1            | 19.9            | 19.9            | 19.9            | 19.2            | 20.9            | 20.0            | 19.9            | 19.9            | 19.9            |
| 12       | 30.8            | 26.5            | 31.9            | 31.7            | 31.7            | 31.7            | 30.8            | 26.5            | 31.8            | 31.7            | 31.7            | 31.7            |
| 13       | 61.6            | 62.4            | 53.5            | 53.4            | 53.4            | 53.4            | 61.6            | 62.4            | 53.5            | 53.4            | 53.4            | 53.4            |
| 14       | 112.1           | 110.6           | 151.9           | 151.9           | 151.8           | 151.8           | 112.1           | 110.6           | 151.9           | 151.9           | 151.9           | 151.9           |
| 15       | 73.6            | 71.7            | 72.6            | 72.5            | 72.5            | 72.5            | 73.6            | 71.7            | 72.5            | 72.5            | 72.5            | 72.5            |
| 16       | 83.4            | 84.5            | 83.9            | 83.7            | 83.7            | 83.7            | 83.4            | 84.5            | 83.8            | 83.7            | 83.7            | 83.7            |
| 17       | 64.9            | 61.6            | 63.6            | 63.4            | 63.4            | 63.4            | 65.0            | 61.6            | 63.5            | 63.4            | 63.4            | 63.4            |
| 18       | 76.1            | 72.6            | 76.6            | 76.5            | 76.5            | 76.5            | 76.1            | 72.6            | 76.5            | 76.5            | 76.5            | 76.5            |
| 19       | 17.3            | 19.2            | 18.9            | 18.7            | 18.7            | 18.7            | 17.3            | 19.3            | 18.8            | 18.7            | 18.7            | 18.7            |
| 20       | 118.0           | 116.1           | 117.7           | 117.7           | 117.7           | 117.7           | 118.0           | 116.2           | 117.9           | 117.7           | 117.7           | 117.7           |
| 21       | 23.1            | 23.7            | 22.6            | 22.5            | 22.5            | 22.5            | 23.1            | 23.8            | 22.6            | 22.5            | 22.5            | 22.5            |
| 22       | 51.7            | 51.2            |                 |                 |                 |                 | 51.7            | 51.2            |                 |                 |                 |                 |

Table S3 Assignment of <sup>13</sup>C NMR data for compounds **2a-2f,6a-6f** in 150MHz ( $\delta$  in ppm)

|          | M-can  | M-can  | can  | can  | can  | M-the  | M-the  | the   | the   | the   | the   |
|----------|--------|--------|------|------|------|--------|--------|-------|-------|-------|-------|
| 1'       | 97.8   | 97.7   | 97.5 | 97.6 | 97.6 | 101.8  | 101.6  | 101.1 | 100.7 | 100.7 | 100.7 |
| 2'       | 37.8   | 37.7   | 39.6 | 38.8 | 38.8 | 84.8   | 84.8   | 74.4  | 73.7  | 73.6  | 73.6  |
| 3'       | 78.9   | 78.9   | 71.9 | 69.8 | 69.8 | 84.2   | 84.2   | 85.5  | 84.2  | 84.2  | 84.2  |
| 4'       | 82.8   | 82.7   | 77.7 | 88.5 | 88.5 | 82.5   | 82.5   | 74.7  | 82.0  | 82.0  | 81.9  |
| 5'       | 71.5   | 71.5   | 71.5 | 70.4 | 70.4 | 71.1   | 71.1   | 71.7  | 71.3  | 71.4  | 71.4  |
| 6'       | 18.6   | 18.6   | 17.7 | 17.9 | 17.9 | 18.3   | 18.3   | 17.9  | 18.1  | 18.2  | 18.1  |
| 2'-OCH3  |        |        |      |      |      | 60.3   | 60.3   |       |       |       |       |
| 3'-OCH3  | 57.2   | 57.1   |      |      |      | 60.3   | 60.3   | 60.6  | 59.8  | 59.7  | 59.7  |
|          | M-digt | M-digt |      | digt | digt | M-digt | M-digt |       | digt  | digt  | digt  |
| 1"       | 98.2   | 98.2   |      | 99.2 | 99.3 | 98.6   | 98.6   |       | 98.6  | 98.7  | 98.7  |
| 2"       | 36.8   | 36.8   |      | 37.7 | 36.5 | 36.8   | 36.8   |       | 38.2  | 37.1  | 37.0  |
| 3"       | 77.6   | 77.6   |      | 68.1 | 67.4 | 77.8   | 77.8   |       | 68.3  | 68.3  | 68.3  |
| 4"       | 82.1   | 82.1   |      | 72.6 | 79.0 | 83.0   | 83.0   |       | 72.9  | 82.4  | 82.4  |
| 5"       | 69.3   | 69.2   |      | 69.7 | 68.9 | 69.0   | 69.0   |       | 69.5  | 71.0  | 69.0  |
| 6"       | 18.3   | 18.3   |      | 17.9 | 17.9 | 18.2   | 18.2   |       | 18.1  | 18.2  | 18.2  |
| 3"-OCH3  | 58.2   | 58.2   |      |      |      | 58.6   | 58.6   |       |       |       |       |
|          | M-cym  | M-cym  |      |      | cym  | M-cym  | M-cym  |       |       | cym   | cym   |
| 1'''     | 98.7   | 98.6   |      |      | 97.6 | 100.0  | 99.9   |       |       | 98.2  | 98.2  |
| 2'''     | 31.8   | 31.8   |      |      | 30.9 | 34.8   | 34.8   |       |       | 33.8  | 34.0  |
| 3'''     | 71.8   | 71.8   |      |      | 75.0 | 77.2   | 77.2   |       |       | 77.3  | 76.9  |
| 4'''     | 82.2   | 82.2   |      |      | 71.9 | 82.0   | 82.0   |       |       | 72.3  | 81.7  |
| 5'''     | 64.4   | 64.3   |      |      | 66.0 | 69.0   | 69.0   |       |       | 66.5  | 67.6  |
| 6'''     | 18.1   | 18.1   |      |      | 17.8 | 18.4   | 18.4   |       |       | 18.1  | 18.3  |
| 2'"-OCH3 | 56.3   | 56.3   |      |      |      |        |        |       |       |       |       |

| 3'"-OCH3   | 55.9 | 55.9 |  | 56.4 | 57.0   | 57.0   | 57.4 | 57.1  |
|------------|------|------|--|------|--------|--------|------|-------|
|            |      |      |  |      | M-dign | M-dign |      | dign  |
| 1''''      |      |      |  |      | 100.8  | 100.8  |      | 100.7 |
| 2""        |      |      |  |      | 31.0   | 31.0   |      | 29.8  |
| 3""        |      |      |  |      | 76.6   | 76.6   |      | 74.3  |
| 4''''      |      |      |  |      | 77.9   | 77.9   |      | 66.5  |
| 5""        |      |      |  |      | 67.4   | 67.4   |      | 66.1  |
| 6""        |      |      |  |      | 17.2   | 17.2   |      | 17.0  |
| 3''''-OCH3 |      |      |  |      | 55.4   | 55.4   |      | 55.5  |
| 4""-OCH3   |      |      |  |      | 60.8   | 60.8   |      |       |

<sup>a</sup>Spectra in pyding-d5. <sup>b</sup>Spectra in CDCl<sub>3</sub>.