Supporting Information

Palladium-Catalyzed Direct C-H Arylation of Ferrocenecarboxamides with Aryl Halides

Huijie Qiao,^a Suyan Sun,^a Fan Yang,^{*a} Yu Zhu,^a Weiguo Zhu,^a Yusheng Wu,^{*b,c} and Yangjie Wu^{*a}

^a The College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou 450052, People's Republic of China

^b Tetranov Biopharm, LLC. 75 Daxue Road, Zhengzhou, 450052, People's Republic of China

^c Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, PR China.

*E-mail: yangf@zzu.edu.cn; wyj@zzu.edu.cn; yusheng.wu@tetranovglobal.com

Contents

1. Preparation of Substrates	S2
2. Optimization of Reaction Conditions	S2
3. References	S 3
4. The Single Crystal X-ray Diffraction Study of 3a and 5a	83
5. Copies of NMR Spectra for the Products	S 7

1. Preparation of Substrates

All amides were prepared from the corresponding ferrocenecarboxylic acid and amines according to the reported procedure.^[1]

2. Optimization of Reaction Conditions

Table S1 Screening of Reaction Conditions^a

A 25 mL schlenk tube was equipped with a magnetic stir bar and charged with **1a** (71.2 mg, 0.2 mmol), **2a** (63 uL, 0.6 mmol, 3 equiv), base (0.4 mmol, 2 equiv), catalyst (0.02 mmol, 10 mol %), ligand (0.02 mmol, 10 mol %), PivOH (6.2mg, 0.06 mmol, 30 mol %) in solvent (1.0 mL). The resulting mixture was heated under nitrogen at 140 °C for 21 h, and cooled to room temperature. Upon completion, CH_2Cl_2 (20 mL) was added to the reaction system, and the resulting mixture was filtered through a pad of Celite. The filtrate was extracted with H_2O (20 mL), and the aqueous layer was extracted with CH_2Cl_2 (2 × 10 mL). The combined organic layer was dried over anhydrous Na_2SO_4 and filtered. After evaporation of the solvent under vacuum, the residue was purified by column chromatography on silica gel (100–200 mesh) using hexane-EtOAc as an eluent to afford the pure product **3a**.

Fe Fe	+	Catalyst, Ligand Solvent, Base Additive, 140°C 21h, nitrogen	Fe O	
1a	2a		3a	

Entry	Solvent	Base	Catalyst	Ligand	Additive	Yield(%) ^[b]
1	toluene	K ₂ CO ₃	Pd(OAc) ₂	PPh ₃	PivOH	8
2	DCE	K ₂ CO ₃	Pd(OAc) ₂	PPh ₃	PivOH	Trace
3	dioxane	K ₂ CO ₃	Pd(OAc) ₂	PPh ₃	PivOH	Trace
4	CH ₃ CN	K ₂ CO ₃	Pd(OAc) ₂	PPh ₃	PivOH	Trace
5	DMF	K ₂ CO ₃	Pd(OAc) ₂	PPh ₃	PivOH	Trace
6	o-xylene	K ₂ CO ₃	Pd(OAc) ₂	PPh ₃	PivOH	30
7	o-xylene	Na ₂ CO ₃	Pd(OAc) ₂	PPh ₃	PivOH	20
8	o-xylene	Cs ₂ CO ₃	Pd(OAc) ₂	PPh ₃	PivOH	Trace
9	o-xylene	K ₃ PO ₄	Pd(OAc) ₂	PPh ₃	PivOH	18
10	o-xylene	KHCO ₃	Pd(OAc) ₂	PPh ₃	PivOH	Trace
11	o-xylene	K ₂ CO ₃	-	PPh ₃	PivOH	Trace
12	o-xylene	K ₂ CO ₃	PdCl ₂	PPh ₃	PivOH	11
13	o-xylene	K ₂ CO ₃	Pd ₂ dba ₃	PPh ₃	PivOH	17
14	o-xylene	K ₂ CO ₃	Pd(CF ₃ COO) ₂	PPh ₃	PivOH	10
15	o-xylene	K ₂ CO ₃	Ni(OAc) ₂	PPh ₃	PivOH	Trace
16	o-xylene	K ₂ CO ₃	[RuCl ₂ (cymene)] ₂	PPh ₃	PivOH	Trace
17	o-xylene	K ₂ CO ₃	Pd(OAc) ₂	PPy ₃	PivOH	23
18	o-xylene	K ₂ CO ₃	Pd(OAc) ₂	DPPF	PivOH	49
19	o-xylene	K ₂ CO ₃	Pd(OAc) ₂	RuPhos	PivOH	61

20	o-xylene	K ₂ CO ₃	Pd(OAc) ₂	XPhos	PivOH	83
21	o-xylene	K ₂ CO ₃	Pd(OAc) ₂	XantPhos	PivOH	42
22	o-xylene	K ₂ CO ₃	Pd(OAc) ₂	^t BuXPhos	PivOH	60
23	o-xylene	K ₂ CO ₃	Pd(OAc) ₂	XPhos	AcOH	61
24	o-xylene	K ₂ CO ₃	Pd(OAc) ₂	XPhos	AcOK	75
25	o-xylene	K ₂ CO ₃	Pd(OAc) ₂	XPhos	PhCOOH	74
26	o-xylene	K ₂ CO ₃	Pd(OAc) ₂	XPhos	-	72
27 ^[c]	o-xylene	K ₂ CO ₃	$Pd(OAc)_2$	XPhos	PivOH	82
28 ^[d]	o-xylene	K ₂ CO ₃	Pd(OAc) ₂	XPhos	PivOH	51

^{*a*} Reaction conditions: **1a** (0.2 mmol), **2a** (0.6 mmol), Catalyst (0.02 mmol), Ligand (0.02 mmol), PivOH (0.06 mmol), Base (0.4 mmol) and Solvent (1.0 mL) under nitrogen at 140 °C for 21 h unless otherwise noted. ^{*b*} Isolated yield based on **1a**. ^{*c*} Without PivOH. ^{*d*} At 150 °C. ^{*e*} At 130 °C.

3. References

1. (a) L. D.Tran, J.Roane and O. Daugulis, *Angew. Chem., Int. Ed.* 2013, **52**, 6043; (b) T. Truong, K. Klimovica and O. Daugulis, *J. Am. Chem. Soc.* 2013, **135**, 9342.

4. The Single Crystal X-ray Diffraction Study of 3a and 5a

CCDC 1446343 (**3a**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www. ccdc.cam.ac.uk/data_request/cif.

Identification code	201506168
Empirical formula	$C_{32}H_{24}FeN_2O$
Formula weight	508.38
Temperature/K	291.15
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	11.3423(6)
b/Å	14.2822(4)
c/Å	16.0589(7)
$\alpha/^{\circ}$	90
β/°	107.980(5)
γ/°	90
Volume/Å ³	2474.4(2)
Z	4
$\rho_{calc}g/cm^3$	1.365
μ/mm ⁻¹	5.099
F(000)	1056.0
Crystal size/mm ³	$0.2\times0.2\times0.16$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	8.196 to 134.122
Index ranges	$\text{-13} \le h \le 13, \text{-17} \le k \le 14, \text{-19} \le l \le 13$
Reflections collected	9066
Independent reflections	4408 [$R_{int} = 0.0267, R_{sigma} = 0.0364$]
Data/restraints/parameters	4408/13/325
Goodness-of-fit on F ²	1.018
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0401$, $wR_2 = 0.0962$
Final R indexes [all data]	$R_1 = 0.0531, wR_2 = 0.1034$
Largest diff. peak/hole / e Å ⁻³	0.32/-0.21

Table S2 Crystal dData and Structure Refinement for 3a.

CCDC 1446344 (**5a**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www. ccdc.cam.ac.uk/data_request/cif.

Table S3 Crystal Data and Structure Refinement for 5a.

Identification code	201506167
Empirical formula	$C_{63}H_{58}Cl_2Fe_2N_4O_2$
Formula weight	1085.73
Temperature/K	291.15
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	14.7314(2)
b/Å	10.30632(19)
c/Å	17.8542(4)
α/°	90
β/°	95.6050(17)
γ/°	90
Volume/Å ³	2697.78(9)
Z	2
$\rho_{calc}g/cm^3$	1.337

 μ /mm⁻¹ F(000) Crystal size/mm³ Radiation 2 Θ range for data collection/° Index ranges Reflections collected Independent reflections Data/restraints/parameters Goodness-of-fit on F² Final R indexes [I>=2 σ (I)] Final R indexes [all data] Largest diff. peak/hole / e Å⁻³ $\begin{array}{l} 5.596\\ \\ 1132.0\\ 0.22\times 0.2\times 0.17\\ CuK\alpha\,(\lambda=1.54184)\\ 6.028\ to\ 134.156\\ -17\leq h\leq 17,\ -12\leq k\leq 6,\ -21\leq l\leq 21\\ 9723\\ 4818\ [R_{int}=0.0292,\ R_{sigma}=0.0363]\\ 4818/4/340\\ 1.053\\ R_1=0.0497,\ wR_2=0.1388\\ R_1=0.0625,\ wR_2=0.1497\\ 0.68/\text{-}0.64 \end{array}$

5. Copies of NMR Spectra for the Products

