Supporting Information

UV-light Aided Photoelectrochemical Synthesis of Au/TiO₂ NTs for

Photoelectrocatalytic Degradation of HPAM

Di Gu, Yang Wang, Zhida Li, Yue Liu, Baohui Wang and Hongjun Wu^{\ast}

Provincial Key Laboratory of Oil&Gas Chemical Technology, College of

Chemistry & Chemical Engineering, Northeast Petroleum University,

Daqing 163318, China. E-mail: hjwu@nepu.edu.cn.

1. Degradation rate of HPAM using Au/TiO_2 NTs with different conditions

Fig. S1 Degradation rate of HPAM using Au/TiO₂ NTs with different

doping voltage

Fig. S2 Degradation rate of HPAM using Au/TiO₂ NTs with different

Fig. S3 Degradation rate of HPAM using Au/TiO $_2$ NTs with different

degradation time

2. XPS of Au/TiO₂ NTs immersed with different concentrations of HAuCl₄

2

Fig. S4 XPS of Au/TiO₂ NTs immersed with different concentrations of HAuCl₄: curve a to e response to the concentrations of HAuCl₄ 0.005 g L⁻¹ to 0.025 g L⁻¹.

3. The photocurrent response of TiO₂ NTs

Fig. S5 Amperometric I-t curves at an applied potential of 0.5V under illumination of 300 W high pressure mercury lamp with 60 s light on/off cycles.

4. Product analysis of the HPAM degradation

Time / min

Fig. S8 HPLC of HPAM degradation after 3.5h irradiation