[Ru^V(NCN-Me)(bpy)(=O)]³⁺ Mediated Efficient Photo-driven Water Oxidation

Jully Patel, ^[a] Karunamay Majee, ^[a] and Sumanta Kumar Padhi *, ^[a]

^a Artificial Photosynthesis Laboratory, Department of Applied Chemistry, Indian School of Mines, Dhanbad, 826004, Jharkhand, India

*E-mails: padhi.sk.ac@ismdhanbad.ac.in

Supporting Information

Table of Contents	
Index	Page No.
Figure S1. Photochemical O ₂ evolution at different pH.	2
Figure S2. Photochemical oxygen evolution at controlled conditions.	2
Figure S3. Light control experiment of the photochemical water oxidation.	3
Figure S4. O ₂ evolution at pH 6.5 in various concentration of 1 .	3
Figure S5 . Rate of O ₂ evolution with varied concentration of catalyst.	4
Figure S6. O ₂ evolution with various concentration of [Ru(bpy) ₃]Cl ₂ .	4
Figure S7 . Rate of O_2 with various concentration of $[Ru(bpy)_3]Cl_2$.	5
Figure S8. O ₂ evolution in phosphate buffer at pH 6.5 and its successive	5
reactivation of a photochemical water oxidation system by alkalization.	
Figure S9. Photo-stability of the photosensitizer before and after irradiation.	6
Figure S10. Absorbance-time traces of catalyst 1 upon visible light irradiation.	6

Figure S1. Photochemical O₂ evolution in 2 mL of phosphate buffer solution at two different pH (7 and 6.5) containing $Na_2S_2O_8$ (1 x 10^{-2} M), $[Ru(bpy)_3]Cl_2$ (1 x $10^{-3}M$) and $[Ru(NCN-Me)(bpy)(OH_2)](PF_6)_2$ (5 x $10^{-7}M$).

Figure S2. Photochemical oxygen evolution in phosphate buffer solution (pH=6.47, 2mL) of (a) $Na_2S_2O_8$ (1 x $10^{-2}M$) and catalyst [Ru(NCN-Me)(bpy)(OH₂)](PF₆)₂ (**1**) (5 x 10^{-6} M) black curve (b) $Na_2S_2O_8$ (1 x $10^{-2}M$) [Ru(bpy)₃]Cl₂ (1 x 10^{-3} M), red curve (c) $Na_2S_2O_8$ (1 x $10^{-2}M$), [Ru(bpy)₃]Cl₂ (1 x 10^{-3} M), red curve (c) $Na_2S_2O_8$ (1 x $10^{-2}M$), [Ru(bpy)₃]Cl₂ (1 x 10^{-3} M), red curve (c) $Na_2S_2O_8$ (1 x $10^{-2}M$), [Ru(bpy)₃]Cl₂ (1 x 10^{-3} M), catalyst [Ru(NCN-Me)(bpy)(OH₂)](PF₆)₂ (**1**) (5 x 10^{-6} M), green curve.

2

Figure S3. Light control experiment of the photochemical water oxidation in a phosphate buffer solution (2mL, pH=6.5) of $[Ru(bpy)_3]Cl_2 (1 \times 10^{-3} \text{ M})$, $Na_2S_2O_8 (1 \times 10^{-2} \text{ M})$ and catalyst $[Ru(NCN-Me)(bpy)(OH_2)](PF_6)_2$ (1) (5 x $10^{-6} \text{ M})$.

Figure S4. O₂ evolution at pH 6.5 in phosphate buffer having $Na_2S_2O_8$ (1 x 10⁻²M), $[Ru(bpy)_3]Cl_2$ (1 x 10⁻³ M) with various concentration of **1**.

Figure S5. Rate of O_2 evolution with varied concentration of catalyst [Ru(NCN-Me)(bpy)(OH₂)](PF₆)₂ (1) in phosphate buffer pH-6.5.

Figure S6. O₂ evolution by 5μ M of [Ru^{II}(NCN-Me)(bpy)(OH₂)]²⁺ (**1**) in phosphate buffer (2mL, pH= 6.5), Na₂S₂O₈ (1 x 10⁻²M)and various concentration of [Ru(bpy)₃]Cl₂.

4

Figure S7. Rate of O₂ evolution by catalyst $[Ru^{II}(NCN-Me)(bpy)(OH_2)]^{2+}$ (1) (5 x 10⁻⁶ M) with various concentration of $[Ru(bpy)_3]Cl_2$.

Figure S8. O₂ evolution in phosphate buffer (2 mL, pH=6.5) containing Na₂S₂O₈ (1 x 10^{-2} M), [Ru(bpy)₃]Cl₂ (1 x 10^{-3} M) catalyst **1** (10 x 10^{-6} M) and its successive reactivation of a photochemical water oxidation system by alkalization.

Figure S9. Absorption spectral changes of solutions before and after irradiation.

Figure S10. Absorbance-time traces of 20 μ M catalyst [Ru(NCN-Me)(bpy)(OH₂)](PF₆)₂ (1) in a phosphate buffer (pH-6.5) upon visible light irradiation.

6