Composite PS-b-P4VP/Ag and PS-b-P4VP/Au thin films fabricated

via a multilevel self-assembly process

Xingjuan Zhao^a, Xiaokai Zhang^b, Hong-Guo Liu^{a,*}

^a Key Laboratory for Colloid and Interface Chemistry of Education Ministry, Shandong University, Jinan 250100, P. R. China. Email: hgliu@sdu.edu.cn
^b College of Physics and Electronics, Shandong Normal University, Jinan 250014, P. R. China

Fig. S1. TEM micrographs of thin films formed at the air/water interface: (a) $V_{\text{DMF}}/V_{\text{CHCl}_3} = 6/4$, the fabrication time is 8h, the concentrations of polymer and AgNO₃ are 0.2 mg mL⁻¹ and 0.01 mol L⁻¹, respectively.

Figure S2. TEM micrographs of the aggregates formed in the upper-phase (the aqueous solution), HAuCl₄ aqueous solution with a concentration of 0.001 mol L⁻¹ and $V_{\text{DMF}}/V_{\text{CHCl}_3} = 6/4$.

Figure S3. Catalytic reduction of 4-NA. Typical time-dependent UV-vis absorption spectra of the reaction solutions in the presence of composite thin films of PS-b-P4VP/Ag in six successive cycles (a-f).

Figure S4. Catalytic reduction of 4-NA. Typical time-dependent UV-vis absorption spectra of the reaction solutions in the presence of composite thin films of PS-b-P4VP/Au in six successive cycles (a-f).