Protein binding-protected DNA three-way junction-mediated rolling

circle amplification for sensitive and specific detection of

transcription factors

Kan Li^a, Lei Wang^b, Xiaowen Xu^a, Ting Gao^a, Wei Jiang^{a,*}

^a Key Laboratory for Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, P.R. China

^b School of Pharmaceutical Sciences, Shandong University, 250012 Jinan, P. R. China

Corresponding author: Tel: 86-531-88363888; fax: 86-531-88564464.

E-mail: wjiang@sdu.edu.cn

Name	Sequence $(5' \rightarrow 3')$				
S1-1	GTA GCA CTA GGA <u>GGA AAG TCC C</u> GA TCC CCC CG				
S1-2	GTA GCA CTA G <u>GGA AAG TCC C</u> GA TCC CCC CG				
S1-3	GTA GCA CTA <u>GGA AAG TCC C</u> GA TCC CCC CG				
S2-1	CGG GG G GAT C<u>GG GAC TTT CC</u>A TGT CTC TGT CTC T				
S2-2	CGG GG G GAT C<u>GG GAC TTT CC</u>A TGA GT CTC TGT CTC T				
S2-3	CGG GG G GAT C<u>GG GAC TTT CC</u>A TGG AGT CTC TGT CTC				
	Т				
Entire	GTA GCA CTA GGA GTC TCT GTC TCT				
primer					
Padlock	TCC TAG TGC TAC CCC AAC CCG CCC TAC CCA AAA CCC				
probe	AAC CCG CCC TAC CCA AAA CCC AAC CCG CCC TAC CCA				
	AGA GAC AGA GAC				

Table S1. Sequences of oligonucleotides used in this study

Note: The binding sequence of NF-kB p50 is underlined. The recognition sequence of AlwI is bold. The complementary sequence of the padlock probe to the DNA three-way junction (TWJ) is italic.

Optimization of the reaction conditions

To obtain the best results, we investigated the reaction conditions. The following are the optimal experimental results of the dosage of AlwI and the concentrations of phi29 DNA polymerase, dNTPs and N-methyl-mesoporphyrin IX (NMM).

Fig. S1 Effect of AlwI dosage on the TFs detection system. Dosage: 2.0, 3.0, 4.0, 4.5, 5.0 and 6.0 units. The error bars showed the standard deviation of three replicate determinations.

Fig. S2 Effect of phi29 DNA polymerase dosage on the TFs detection system. The phi29 DNA polymerase dosage: 1.0, 1.5, 2.0, 2.5 and 3.0 U. The error bars showed the standard deviation of three replicate determinations.

Fig. S3 Effect of the concentrations of dNTPs on the TFs detection system. The concentrations of dNTPs: 0.1, 0.25, 0.4, 0.5, 0.75 and 1.0 mM. The error bars showed the standard deviation of three replicate determinations.

Fig. S4 Effect of different concentrations of NMM on the TFs detection system. NMM concentration: 0.75, 1.75, 2.75, 3.75, 4.75, and 6.75 μ M. The error bars showed the standard deviation of three replicate determinations.

Fig. S5 (A) Fluorescence curves obtained from different NF- κ B p50 concentrations using SYBR Green I as a signal indicator. (B) Linear relationship between the fluorescence enhancement and NF- κ B p50 concentration in SYBR Green I method. Error bars indicate the standard deviation of 3 measurements.

Fig. S6 The relative fluorescence intensity with addition of oridonin with different

concentrations (0, 2.5, 5.0, 10, 15, 20 and 25 μ M). Error bars were the standard deviations three independent measurements.

Concentration	Sample 1	Sample 2	Sample 3	D	DCD
(mol/L)	(mol/L)	(mol/L)	(mol/L)	Recovery	KSD
5.0×10 ⁻¹¹	4.7×10 ⁻¹¹	4.8×10 ⁻¹¹	4.9×10 ⁻¹¹	96.0%	2.1%
5.0×10 ⁻¹⁰	4.9×10 ⁻¹⁰	5.3×10 ⁻¹⁰	5.2×10 ⁻¹⁰	102.7%	4.1%
5.0×10 ⁻⁹	4.8×10 ⁻⁹	5.0×10 ⁻⁹	5.0×10-9	98.7%	2.3%

Table S2. Recovery experiment in this study