Electrokinetical properties and stability of cerium dioxide suspensions

S.Barany¹, K.Bohacs³, I.Chepurna^{4,*}, R. Meszaros¹

 ¹MTA-ME Materials Science Research Group, Institute of Chemistry, University of Miskolc, Miskolc-Egyetemvaros, 3515, Hungary
² The Transcarpathian II. Ferenc Rakoczi Hungarian Institute 6 Kossuth sq., Beregovo, 90200 Ukraine
³ Institute of Raw Materials Preparation and Environmental Processing, University of Miskolc, 3515, Hungary
⁴Institute for Sorption and Problems of Endoecology National Academy of Sciences of Ukraine, 13, General Naumov str., 03164 Kyiv, Ukraine

Table 1	
Porous structure of cerium dioxide	
Surface area, m^2/g	15.4
Total pore volume, cm ³ /g	0.46
Pore diameter, nm	75.8

10.80.60.40.200010203040R, m

(b)

(a)

Fig. 1 N_2 adsorption-desorption isotherm (a) and pore size distribution curve (b) for cerium dioxide.

Fig. 2 X-ray diffraction pattern for cerium dioxide powder calcined at 750 $^{0}C/2$ h.

Fig.3 Potentiometric titration curves of CeO₂ suspension by HCl and KOH in DI water (curve 1) and 1 mmol KCl solution (curve 2).

Fig.4 Zeta-potential of CeO₂ supension versus pH.

Fig. 5 Zeta potential of CeO_2 suspension versus concentration of added electrolytes at pH 6.2: KCl (1), $CaCl_2$ (2) and $AlCl_3$ (3).

Fig. 6 Zeta potential of CeO_2 suspension versus concentration with addition of different electrolytes at pH 9.8: KCl (1), $CaCl_2$ (2) and $LaCl_3$ (3).

•

Fig. 7 Particle size distribution of freshly prepared and aged CeO_2 suspensions: curve 1- immediately after 20 min of external ultrasonic treatment at 35 kHz, curve 2 - shelf life -1 week.; C(solid) = 0.1 g/L, pH = 6.2.

Fig.8 Particle size distribution of aged CeO_2 suspension at pH 9.8 (Shelf life -1 week).

Fig. 9 Particle size distribution of aged CeO_2 nanosuspension at pH 6.2 (Shelf life - 1 week). Duration of ultrasonic treatment in the measuring unit – 3 min; frequency -22kHz.

Fig. 10 Particle size distribution of aged CeO₂ nanosuspension at pH 9.8 (Shelf life -1 week). Duration of ultrasonic treatment in the measuring unit– 3 min; frequency -22kHz.

Fig. 11 Particle size distribution of aged CeO_2 nanosuspension at pH 6.2 (Shelf life -1 week). Time of ultrasonic treatment in the measuring unit – 2 min; Time of subsequent stay after ultrasonic treatment -2 min (at gentle agitation in the circulating system).

Fig. 12 Particle size distribution of aged CeO₂ suspension at pH 6.2, presence of KCl (C=40 mmol/L) and gentle agitation in the circulating system.

Fig. 13 Particle size distribution of aged CeO_2 suspension at pH 6.2, in the presence of $CaCl_2$ (C=2.1 mmol/L) and gentle agitation in the circulating system.