Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Shape-Selective Synthesis of NiO Nanostructures for Hydrazine Oxidation as a Nonenzymatic Amperometric Sensor

Dhanasekaran Vikraman^a, Hui Joon Park^{a,b*}

^aDivision of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea ^bDepartment of Electrical and Computer Engineering, Ajou University, Suwon 16499, Republic of Korea * Corresponding author E.mail: huijoon@ajou.ac.kr

Table S1. Size and Shape of the NiO nanostrucutres by TEM and XRD

Turne of undusing a gorde	Crystallite size by XRD nm	Size and Shape by TEM	
Type of reducing agents		Shape	Size (width) nm
NaOH with PEG	4.66	Nano-pellet	~3-4
NaOH	3.08	Nano-rods	~2-3
NH ₃	2.71	Nano-dots	~2-3
Na ₂ CO ₃	12.51	Cuboid	~10-20

Type of reducing agents	Shape of NiO	S _{BET} (m²/g)	Pore volume (cm ³ /g)
NaOH with PEG	Nano-pellet	19.3	0.1098
NaOH	Nano-rods	22.5	0.1375
NH ₃	Nano-dots	32.7	0.1786
Na ₂ CO ₃	Cuboid	47.3	0.2569

Table S2. Characteristics of NiO@SiO_2 samples determined by N_2 sorption

Type of reducing agents	Shape of NiO	Electrocatalytic activity towards hydrazine oxidation mA·g ⁻¹	
		NiO	NiO@SiO ₂
NaOH with PEG	Nano-pellet	953	231
NaOH	Nano-rods	396	298
NH ₃	Nano-dots	310	155
Na ₂ CO ₃	Cuboid	503	325

 Table S3. Electrocatalytic activity of NiO and NiO-silica core shell nanostructures

Figure S1. SAED patterns of NiO nanostructures prepared using different reducing agents such as (a) NaOH with PEG, (b) NaOH without PEG, (c) NH₃ and (d) Na₂CO₃.

Fig. S2. TEM images of NiO@SiO₂ nanostructures prepared for different reducing agents using NiO (a) NaOH with PEG, (b) NaOH without PEG, (c) NH₃ and (d) Na₂CO₃.

Fig. S3. Adsorption and desorption isotherm of N_2 and pore size distribution of cuboid shape NiO@SiO₂ structure.

Fig. S4. TEM images of NiO nanostructures prepared at different solution bath temperatures with using NaOH with PEG as a reducing agent (a) 40 °C, (b) 55 °C, (c) 70 °C and (c) 85 °C. (c) is the same image as Figure 2a.

Fig. S5. SEM micrographs of NiO nanostructures prepared at different solution bath temperatures with using NaOH with PEG as a reducing agent (a) 40 °C, (b) 55 °C, (c) 70 °C and (d) 85 °C. (c) is the same image as Figure 1a.

Fig. S6. X-ray diffraction patterns of NiO nanostructures reduced using NaOH with PEG at different solution bath temperatures.

Fig. S7. SEM micrographs of Nafion/NiO/GC electrode surface. NiO prepared using different reducing agents (a) NaOH with PEG, (b) NaOH without PEG, (c) NH₃ and (d) Na₂CO₃.

Fig. S8. SEM micrographs of Nafion/NiO@SiO₂/GC electrode surface. NiO prepared using different reducing agents (a) NaOH with PEG, (b) NaOH without PEG, (c) NH₃ and (d) Na₂CO₃.

Fig. S9. Cyclic voltammograms of the Nafion/NiO/GC electrode in 0.025 M NaOH with and without hydrazine hydrate (0.1 M) at 100 mV \cdot s⁻¹ scan rates.