Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting Information

Economical synthesis of cyclic carbonates from carbon dioxide and halohydrins using K_2CO_3

Takuji Hirose,^{a*} Shinsuke Shimizu,^a Shujie Qu, Hiroaki Shitara,^a Koichi Kodama^a and Lin Wang^a ^a Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan *: Corresponding author.E-mail: <u>hirose@apc.saitama-u.ac.jp</u>

Table, Figure and Experimental Section:

Table S1 Effect of Several Other Solvents	S2
Table S2 Effect of Cs ₂ CO ₃ as Base for	1f and 1g
Figure S1. EDX analysis of the precipitate presence of K_2CO_3 (Table 1, entry 9).	after the reaction of 1-bromo-2-propanol and CO_2 in theS4
Figure S2. XRD profile of the precipitate af of K_2CO_3 (Table 1, entry 9).	ter the reaction of 1-bromo2-propanol and CO ₂ in the presence
¹ H NMR Spectral Charts • 2d + 2d'	S6

• 2d + 2d	
• 2f	

Entry	Solvent	Dielectric const.	Yield (%)
1	Toluene	2.38	6
2	C ₂ H ₅ OH	24.5	62
3	Dry DMF	36.7	90
4	DMF	(36.7)	90
4	CH ₃ CN	37.5	88
5	DMSO	46.7	88
6	H ₂ O	80.1	32

 Table S1
 Effect of Several Other Solvents

^a Reaction conditions: **1a** (5 mmol; 22% is 2-bromo-1-propanol), K_2CO_3 (0.76 g, 5.5 mmol), CO_2 (99.999%, balloon). After solvent and K_2CO_3 were stirred in the presence of CO_2 (1 atm) for 4 h at 30 °C, **1a** was added and reacted for 20 h. ^b Isolated yield.

^c anhydrous (non-anhydrous and non-deoxygenated).

Entry	Halohydrin	Product	Yield (%)
1	OH ↓↓CI 1f	2f	41
2	OH Br 1g	0 0 2g	61
3	HO Br 1h	2h	83

Table S2 Effect of Cs_2CO_3 as Base for 1f, 1g and $1h^1$

^a Reaction conditions: **1a** (5 mmol; 22% is 2-bromo-1-propanol), Cs_2CO_3 (0.76 g, 5.5 mmol), CO_2 (99.999%, balloon). After solvent and K_2CO_3 were stirred in the presence of CO_2 (1 atm) for 4 h at 30 °C, **1a** was added and reacted for 20 h. ^b Isolated yield.

Reference

_

1. M. R. Reithofer, Y. N. Sum and Y. Zhang, Green Chem., 2013, 15, 2086–2090.

Figure S1. EDX analysis of the precipitate after the reaction of 1-bromo-2-propanol and CO_2 in the presence of K_2CO_3 (Table 1, entry 9).

Figure S2. XRD profile of the precipitate after the reaction of 1-bromo2-propanol and CO_2 in the presence of K_2CO_3 (Table 1, entry 9).

-C**H**2-Br

¹H NMR (300 MHZ, CDCl₃): δ 5.00-4.92 (m), 4.63-4.57 (m), 4.44-4.34 (m), 3.83-3.74 (m), 3.72-3.49 (m).

 ^1H NMR (300 MHZ, CDCl_3): δ 4.15 (s), 1.53 (s).