Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supporting information:

Fig. S1.The internal energies for the $(Au_x-Cu_y-Ni_y)_{N=32,108,256}$ nanoclusters with the different Au mole fractions at different temperatures in the heating and cooling processes.

Fig. S2.The different RDFs for the $(Au_x-Cu_y-Ni_y)_{N=108}$ nanoclusterat at initial at 300 K (the solid lines) and at 300 K after cooling process (the dashed lines) at different Au mole fractions.

Fig. S3. The number of the Au, Ni, and Cu surface atoms in the $(Au_x-Cu_y-Ni_y)_{N=108}$ nanocluster at the initial at 300 K (the solid lines) and at 300 K after cooling process (the dashed lines) at the different Au mole fractions.

Fig. S4. The different RDFs for the $(Au_x-Cu_y-Ni_y)_{N=256}$ nanocluster at initial at 300 K (the solid lines) and at 300 K after cooling process (the dashed lines) at different Au mole fractions.

Fig. S5. The number of the Au, Ni, and Cu surface atoms in the $(Au_x-Cu_y-Ni_y)_{N=256}$ nanocluster at the initial at 300 K (the solid lines) and at 300 K after cooling process (the dashed lines) at the different Au mole fractions.