Cu(I)-Catalyzed Multicomponent Cascade Reactions of

Terminal Alkynes, Unactivated Primary Alkyl Bromides, CO2

and NaN₃

Fu-song Wu,^{a,†} Wei Tong,^{a,†} Ying Liang^{b,*}, Heng-shan Wang,^a Qing-hu Teng,^a Ying-ming Pan^{a,*}

^a State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004 (China). E-mail: panym2013@hotmail.com. Fax: +86-773-5803930.

^b School of Life and Environmental Sciences, Guilin University of Electronic Technolegy, Guilin, 541004 (China). E-mail: liangyi0774@guet.edu.cn.

Fax: +86-773-2191683.

[†]These authors contributed equally to this work.

Table of Contents

General information	S2
Synthesis of 4a-4p	S2
Synthesis of 4d and 3d	S3
Control experiments	S3
X-ray crystal structure of triazolo-fused dihydrooxazinone 4k	
Characterization of the compounds	S5-S10
Copies of ¹ H NMR and ¹³ C NMR spectra of products	S11-S26

General information.

All the reactions were carried out in dried glasswares with freshly ditilled dry solvents under anhydrous conditions unless otherwise indicated. Column chromatography was performed on silica gel (300-400 mesh). NMR spectra were obtained using a Bruker Avance 500 spectrometer (¹H at 500 MHz and ¹³C at 125MHz) or Bruker Avance 400 spectrometer (¹H at 400 MHz and ¹³C at 100 MHz). High resolution mass spectra (HRMS) were recorded on the Exactive Mass Spectrometer (Thermo Scientific, USA) equipped with ESI ionization source. Gas Chromatography-Mass Spectrometer (GC-MS) were recorded on the Exactive Mass Spectrometer (Shimadzu, Japan) equipped with EI ionization source.

Materials. Unless stated otherwise, commercial reagents were used without further purification. All reagents were weighed and handled in air at room temperature.

Synthesis of 4a-4p.

CuCl (0.05 mmol), Cs_2CO_3 (0.6 mmol) and Ph_3P (0.05 mmol) was added in a 10 mL Schlenk flask. The flask was sealed and pumped in CO_2 (99.99%, balloon). Then, the terminal alkyne 1 (0.5 mmol), 2 (0.6 mmol) and DMF (2 mL) was added with syringe. The reaction mixture was stirred at 80 °C for 12 h. After the mixture was cooled to room temperature, CO_2 was degased and NaN_3 (0.4 mmol) was added. The reaction mixture was stirred at room temperature for 3 h under an air atmosphere. The resulting mixture was diluted with ethyl acetate. Then water was added to the mixture, which was extracted with ethyl acetate until no product was detected. The combined organic layer was washed with saturated aqueous NaCl and dried over anhydrous Na_2SO_4 . Then the solvent was removed under vacuum. The crud product was purified by colomn chromatography on silica gel (300-400 mesh) to afford the desired product. The products were further identified by NMR and MS.

CuCl (0.05 mmol), Cs_2CO_3 (0.6 mmol) and Ph_3P (0.05 mmol) was added in a 10 mL Schlenk flask. The flask was sealed and pumped in CO₂ (99.99%, balloon). Then, the 1-ethynyl-4-propylbenzene **1d** (0.5 mmol), **2a** (0.6 mmol) and DMF (2 mL) was added with syringe. The reaction mixture was stirred at 80 °C for 12 h. After the mixture was cooled to room temperature, CO₂ was degased and NaN₃ (0.4 mmol) was added. The reaction mixture was stirred at room temperature for 3 h under an air atmosphere. The resulting mixture was diluted with ethyl acetate. Then water was added to the mixture, which was extracted with ethyl acetate until no product was detected. The combined organic layer was washed with saturated aqueous NaCl and dried over anhydrous Na₂SO₄. Then the solvent was removed under vacuum. The crud product was purified by colomn chromatography on silica gel (300-400 mesh) to afford the desired product **4d** in 70% yield and side-product **3d** in 18% yield. The products were further identified by NMR and MS.

Control experiments.

CuCl (0.05 mmol), Cs_2CO_3 (0.6 mmol) and Ph_3P (0.05 mmol) was added in a 10 mL Schlenk flask. The flask was sealed and pumped in CO_2 (99.99%, balloon). Then, the terminal alkyne **1** (0.5 mmol), **2** (0.6 mmol) and DMF (2 mL) was added with syringe. The reaction mixture was stirred at 80 °C for 12 h. The resulting mixture was diluted with ethyl acetate. Then water was added to the mixture, which was extracted with

ethyl acetate until no **3a** was detected. The combined organic layer was washed with saturated aqueous NaCl and dried over anhydrous Na_2SO_4 . Then the solvent was removed under vacuum. The crud product was purified by colomn chromatography on silica gel (300-400 mesh) to afford **3a** in 86% yield.

3a was dissolved in DMF (2 mL) and NaN₃ (0.275 mmol) was added subsequently. The reaction mixture was stirred at room temperature for 3 h under an air atmosphere. The resulting mixture was diluted with ethyl acetate. Then water was added to the mixture, which was extracted with ethyl acetate until no product was detected. The combined organic layer was washed with saturated aqueous NaCl and dried over anhydrous Na₂SO₄. Then the solvent was removed under vacuum. The crud product was purified by colomn chromatography on silica gel (300-400 mesh) to afford the **4a** in 93% yield.

CuCl (0.05 mmol), Cs_2CO_3 (0.6 mmol) and Ph_3P (0.05 mmol) was added in a 10 mL Schlenk flask. The flask was sealed and pumped in Ar (balloon) instead of CO_2 . Then, the terminal alkyne **1a** (0.5 mmol), **2a** (0.6 mmol) and DMF (2 mL) was added with syringe. The reaction mixture was stirred at 80 °C for 12 h, which could not afford the desired product **3a**.

X-ray crystal structure of triazolo-fused dihydrooxazinone 4k.

Characterization of the compounds

2-Bromoethyl 3-phenylpropiolate (3a).

Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.58 (m, 2H), 7.49 – 7.44 (m, 1H), 7.38 (dd, *J* = 10.3, 4.5 Hz, 2H), 4.54 (t, *J* = 6.3 Hz, 2H), 3.57 (t, *J* = 6.3 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 153.5, 133.1, 130.9, 128.6, 119.3, 87.5, 80.1, 65.1, 27.8. MS (EI) m/z (M)⁺ 252 and 254. Anal calcd for C₁₁H₉BrO₂: C, 52.20; H, 3.58; Found: C, 52.49; H, 3.21.

3-Phenyl-6,7-dihydro-4H-[1,2,3]triazolo[5,1-c][1,4]oxazin-4-one (4a).

White solid; m.p. 123.5-124.5 °C; ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.17 – 8.13 (m, 2H), 7.54 – 7.47 (m, 3H), 4.86 – 4.80 (m, 4H). ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 157.0, 148.5, 129.5, 129.1, 128.5, 128.1, 121.4,66.1, 44.7. **HRMS (ESI+) m/z** calcd for C₁₁H₁₀O₂N₃ (M+H)⁺ 216.0773 found 216.0767.

3-(*p*-Tolyl)-6,7-dihydro-4H-[1,2,3]triazolo[5,1-c][1,4]oxazin-4-one (4b).

White solid; m.p. 100.0-101.0 °C; ¹**H NMR** (400 MHz, DMSO- d_6) δ 8.06 (d, J = 8.2 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 4.85 – 4.78 (m, 4H), 2.37 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 157.0, 148.6, 139.1, 129.1, 128.0, 126.3, 121.0, 66.0, 44.6, 21.0. HRMS (ESI⁺) m/z calcd for C₁₂H₁₂O₂N₃ (M+H)⁺ 230.0930 found 230.0924.

3-(4-Ethylphenyl)-6,7-dihydro-4H-[1,2,3]triazolo[5,1-c][1,4]oxazin-4-one (**4c**). White solid; m.p. 91.1-92.1 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, *J* = 7.4 Hz, 2H), 7.27 (d, *J* = 8.1 Hz, 2H), 4.63 (d, *J* = 1.2 Hz, 4H), 2.67 (q, *J* = 7.6 Hz, 2H), 1.24 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 156.5, 150.7, 146.4, 128.4, 128.1, 125.8, 120.0, 65.5, 44.9, 28.7, 15.4. HRMS (ESI⁺) m/z calcd for C₁₃H₁₄O₂N₃ (M+H)⁺ 244.1086 found 244.1078.

3-(4-Propylphenyl)-6,7-dihydro-4H-[1,2,3]triazolo[5,1-c][1,4]oxazin-4-one (**4d**). White solid; m.p. 94.0-95.0 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.12 (d, *J* = 8.1 Hz, 2H), 7.27 (d, *J* = 8.2 Hz, 2H), 4.69 (s, 4H), 2.63 – 2.60 (m, 2H), 1.70 – 1.61 (m, 2H), 0.94 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 156.5, 151.1, 145.1, 128.8, 128.5, 125.8, 120.0, 65.6, 45.0, 38.0, 24.4, 13.9. HRMS (ESI⁺) m/z calcd for C₁₄H₁₆O₂N₃ (M+H)⁺258.1243 found 258.1234.

3-(4-Pentylphenyl)-6,7-dihydro-4H-[1,2,3]triazolo[5,1-c][1,4]oxazin-4-one (**4e**). White solid; m. p. 78.5-79.5 °C; ¹**H NMR** (500 MHz, DMSO-*d6*) δ 8.06 (d, *J* = 8.2 Hz, 2H), 7.33 (d, *J* = 8.2 Hz, 2H), 4.81 (m, 4H), 2.65 – 2.59 (m, 2H), 1.64 – 1.56 (m, 2H), 1.30 (m, 4H), 0.87 (t, *J* = 7.0 Hz, 3H). ¹³**C NMR** (125 MHz, DMSO-*d6*) δ 157.1, 148.6, 144.0, 128.4, 128.0, 126.5, 121.1, 66.1, 44.7, 35.0, 30.9, 30.5, 22.0, 14.0. HRMS (ESI⁺) m/z calcd for $C_{16}H_{20}O_2N_3$ (M+H)⁺ 286.1556 found 286.1547.

3-(4-(Tert-butyl)phenyl)-6,7-dihydro-4H-[1,2,3]triazolo[5,1-c][1,4]oxazin-4-one (**4f**). White solid; m.p. 93.6-94.6 °C; ¹**H NMR** (400 MHz, DMSO- d_6) δ 8.07 (d, *J*=8.6 Hz, 2H), 7.53 (d, *J*= 8.7 Hz, 2H), 4.82 (m, 4H), 1.32 (s, 9H). ¹³**C NMR** (100 MHz, DMSO- d_6) δ 157.0, 152.1, 148.6, 127.9, 126.2, 125.2, 121.0,66.0, 44.6, 34.5, 31.0. **HRMS (ESI⁺) m/z** calcd for C₁₅H₁₈O₂N₃ (M+H)⁺272.1399 found 272.1391.

3-(4-Methoxyphenyl)-6,7-dihydro-4H-[1,2,3]triazolo[5,1-c][1,4]oxazin-4-one (**4g**). White solid; m.p. 103.5-104.5 °C; ¹**H NMR** (400 MHz, DMSO- d_6) δ 8.14 (d, J = 8.8 Hz, 2H), 7.07 (d, J = 8.9 Hz, 2H), 4.85 – 4.77 (m, 4H), 3.82 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6)) δ 160.2, 157.2, 148.5, 129.6, 121.4, 120.5, 113.9, 66.0, 55.3, 44.6. HRMS (ESI⁺) m/z calcd for C₁₂H₁₂O₃N₃ (M+H)⁺ 246.0879 found 246.0872.

3-(4-Fluorophenyl)-6,7-dihydro-4H-[1,2,3]triazolo[5,1-c][1,4]oxazin-4-one (**4h**). White solid; m.p. 145.2-146.2 °C; ¹**H NMR** (500 MHz, DMSO- d_6) δ 8.25 – 8.20 (m, 2H), 7.39 – 7.34 (m , 2H), 4.85 – 4.79 (m,4 H). ¹³**C NMR** (125 MHz, DMSO- d_6) δ 163.7, 161.7, 157.0, 147.5, 130.3, 130.3, 125.6, 125.5, 121.3 , 115.6 , 115.4, 66.1, 44.6. **HRMS (ESI+) m/z** calcd for C₁₁H₉O₂N₃F (M+H)+234.0679 found 234.0910.

3-(4-Bromophenyl)-6,7-dihydro-4H-[1,2,3]triazolo[5,1-c][1,4]oxazin-4-one (**4i**). White solid; m.p. 115.0-116.0 °C; ¹HNMR (400 MHz,CDCl₃) δ 8.22 (dd, *J*= 8.0, 1.7 Hz, 2H), 7.49–7.44 (m, 2H), 4.75–4.66(m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 156.4, 150.9, 130.1, 128.7, 128.6, 128.5, 120.4, 65.6, 45.1. MS (EI) m/z (M-Br+H)⁺ 215. Anal calcd for C₁₁H₉N₃O₂: C, 61.39; H, 4.22; Found: C, 61.62; H, 3.08.

3-(*m*-Tolyl)-6,7-dihydro-4H-[1,2,3]triazolo[5,1-c][1,4]oxazin-4-one (**4j**).

White solid; m.p. 105.4-106.4 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 7.95 (d, J = 8.4 Hz, 2H), 7.39 (t, J = 7.5 Hz, 1H), 7.28 (d, J = 7.4 Hz, 1H), 4.86–4.78 (m, 4H), 2.38 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 157.0, 148.7, 137.6, 130.2, 129.0, 128.6, 128.4, 125.4, 121.3,66.1, 44.7, 21.1. HRMS (ESI⁺) m/z calcd for C₁₂H₁₂O₂N₃ (M+H)⁺230.0930 found 230.0921.

3-(3-Methoxyphenyl)-6,7-dihydro-4H-[1,2,3]triazolo[5,1-c][1,4]oxazin-4-one (**4**k). White solid; m.p. 118.0-119.0 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 7.77 (dd, J = 13.2, 4.9 Hz, 2H), 7.43 (t, J = 8.0 Hz, 1H), 7.05 (dd, J = 8.2, 2.4 Hz, 1H), 4.83 (m, 4H), 3.82 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 159.2, 157.0, 148.3, 130.3, 129.6, 121.5, 120.3, 115.2, 113.5, 66.0, 55.1, 44.7. HRMS (ESI⁺) m/z calcd for C₁₂H₁₂O₃N₃ (M+H)⁺ 246.0879 found 246.0871.

3-(Naphthalen-1-yl)-6,7-dihydro-4H-[1,2,3]triazolo[5,1-c][1,4]oxazin-4-one (4m).White solid. m.p. 129.0-130.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.88 (s, 1H), 8.36 (dd, J = 8.6, 1.7 Hz, 1H), 7.96 (dd, J = 10.5, 7.6 Hz, 2H), 7.87 (dd, J = 5.8, 3.2 Hz, 10.5)1H), 7.57 – 7.49 (m, 2H), 4.81 – 4.74 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 156.5, 151.2, 134.1, 133.3, 129.1, 128.9, 128.4, 127.8, 127.3, 126.6, 126.0, 125.6, 120.6, 65.6, 45.2. HRMS (ESI⁺) m/z calcd for $C_{15}H_{12}O_2N_3$ (M+H)⁺ 266.0930 found 266.0921.

3-(Thiophen-2-yl)-6,7-dihydro-4H-[1,2,3]triazolo[5,1-c][1,4]oxazin-4-one (4n). White solid; m.p. 118.0-119.0 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 8.17 – 8.15 (m, 1H), 7.74 - 7.72 (m, 1H), 7.23 (dd, J = 5.0, 3.8 Hz, 1H), 4.81 (s, 4H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 156.9, 143.8, 128.8, 128.6, 128.1, 119.8, 66.1, 44.6. MS (EI) m/z (M)⁺ 221. Anal calcd for C₉H₇N₃O₂S: C, 48.86; H, 3.19; Found: C, 48.66; H, 3.48.

40

3Hexyl-6,7-dihydro-4H-[1,2,3]triazolo[5,1-c][1,4]oxazin-4-one (40). Yellow oil; ¹**H NMR** (400 MHz, CDCl₃) δ 4.73 – 4.65 (m, 4H), 2.98 – 2.92 (m, 2H), 1.77 - 1.68 (m, 2H), 1.40 - 1.25 (m, 6H), 0.86 (t, J = 6.7 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 156.6, 153.9, 121.1,65.8, 44.8, 31.6, 29.0, 28.7, 25.7, 22.6, 14.2. **HRMS (ESI⁺)** m/z calcd for C₁₁H₁₈O₂N₃ (M+H)⁺ 224.1399 found 224.1392.

Ethane-1,2-diyl bis(3-(4-propylphenyl)propiolate) (3d).

Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 8.2 Hz, 4H), 7.13 (d, *J* = 8.2 Hz, 4H), 4.48 (s, 4H), 2.58 – 2.52 (m, 4H), 1.64 – 1.54 (m, 4H), 0.89 (t, *J* = 7.4 Hz, 6H).¹³C NMR (100 MHz, CDCl₃) δ 153.6, 146.1, 133.0, 128.7, 116.4, 87.7, 79.9, 63.1, 38.0, 24.0, 13.6. **MS (EI) m/z** (M)⁺ 402. Anal calcd for C₂₆H₂₆O₄: C, 77.59; H, 6.51; Found: C, 77.40; H, 6.79.

Copies of ¹H NMR and ¹³C NMR spectra of products.

