Supplementary Information for

Symmetric and unsymmetric thienyl-substituted fluorenone

dyes: static excimer-induced emission enhancement

Fan Xu,^a Mao-Sen Yuan,^{*a,b} Wenji Wang,^a Xianchao Du,^a Hui Wang,^a Na Li,^a Ruijin Yu,^a Zhenting Du^a and Jinyi Wang^{*a}

^a College of Science, Northwest A&F University, Yangling 712100, P.R. China, Fax: +86 29 87082520;
Tel: +86 29 87082520; E-mail: yuanms@nwsuaf.edu.cn; jywang@nwsuaf.edu.cn

^b State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China

1. Single-Crystal Stucture	S2
2. Theoretical calculation	S3
3. ¹ H NMR and ¹³ C NMR	
4. TOF-MS-EI	S13

1. Single-Crystal Structure

Table S1.	Selected Crystallographic Data for ATPF.	
-----------	--	--

Compound	ATPF	
Empirical formula	$C_{19} \operatorname{H}_{12}O_2 S$	
Formula mass	304.35	
Crystal color	yellow	
crystal size (mm ³)	0.48×0.31×0.10	
Crystal system	Triclinic	
Space group	P-1	
<i>a</i> [Å]	6.1090(6)	
<i>c</i> [Å]	15.5179(14)	
<i>V</i> [Å ³]	699.34(11)	
Ζ	2	
ρ (calcd, g/cm ³)	1.445	
$\mu [\mathrm{mm}^{-1}]$	0.235	
F (000)	316	
$ heta_{\min}$ - $ heta_{\max}$ [°]	2.702-23.81	
T / K	298(2)	
Collected reflections	2387	
Unique reflections	1549	
R/wR	0.1030/0.2690	

2. Theoretical Calculation

ATPF single- molecule	Excited State 2.8624 eV	1: Singlet-A 433.14 nm
LUMO+1	f=0.0969 79 -> 80	0 67617
No.81	79 -> 81	0.16283
-0.07190 au	Excited State 3.1201 eV f=0.0002	2: Singlet-A 397.38 nm
	76 -> 80 77 -> 80	0.25725 0.61396
	/// -> 81	0.20303
No.80	Excited State 3.5296 eV	3: Singlet-A 351.27 nm
-0.09260 au	f=0.0074	0 46540
	78 -> 80 78 -> 81	-0.46549 0.47593
	78 -> 82	-0.18960
HOMO	Excited State	4: Singlet-A
No.79	3.6165 eV f=0.5596	342.83 nm
	74 -> 80	0.11681
-0.21724 au	76 -> 80 79 -> 80	0.13770 -0.14466
•	79 -> 81	0.65138
НОМО-1		
No.78		
-0.25309 au		

 Table S2. The graphic representations of the frontier molecular orbits of ATPF single-molecule.

ATPF Dimer ⁻	Excited State 2.5338 eV f=0.0725 158 ->159	1: Singlet-A 489.31 nm
LUMO+1	150 157	0.07575
No.160	Excited State	2: Singlet-A
-0.08993 au	2.7157 eV f=0.0000	456.55 nm
	158 ->160 158 ->161	0.68739 0.11667
	Excited State 2.9084 eV f=0.0000	3: Singlet-A 426.30 nm
No.159	157 ->159	0.68538
-0.09861 au	Excited State 3.0151 eV f=0.0002	4: Singlet-A 411.22 nm
	151 ->159 152 ->160	-0.10268 0.37633
	152 ->161 153 ->159	0.14694 0.51728
HOMO No.158	153 ->162 154 ->160	0.12183 0.10303
-0.20216 au		
HOMO-1 No.157		
0.21476 au		

3. ¹H NMR and ¹³C NMR of CTPF, ATPF, BTPF and ETPF

Figure S1. ¹H NMR spectrum (500 MHz, CDCl₃) of compound CTPF.

Figure S2. ¹³C NMR spectrum (125 MHz, CDCl₃) of compound CTPF.

Figure S3. ¹H NMR spectrum (500 MHz, CDCl₃) of compound ATPF.

Figure S4. ¹³C NMR spectrum (125 MHz, CDCl₃) of compound ATPF.

Figure S5. ¹H NMR spectrum (500 MHz, TFA) of compound BTPF.

Figure S6. ¹³C NMR spectrum (125 MHz, TFA) of compound BTPF.

Figure S7. ¹H NMR spectrum (500 MHz, TFA) of compound ETPF.

Figure S8. ¹³C NMR spectrum (125 MHz, TFA) of compound ETPF.

4. TOF-MS-EI

Figure S9. The TOF-MS-EI pictures of compounds CTPF, ATPF, BTPF and ETPF.