## Supporting Information

# From 1D to 3D Lanthanide Coordination Polymers Constructed with Pyridine-3,5-dicarboxylic Acid: Synthesis, Crystal Structures, and Catalytic Properties

Xiao-Ming Lin,\*<sup>a,b</sup> Ji-Liang Niu,<sup>a</sup> Pei-Xian Wen,<sup>a</sup> Yan-Na Lu,<sup>a</sup> Lei Hu,<sup>a</sup> Da-Liang Zhang<sup>b</sup> and Yue-Peng Cai\*<sup>a</sup> <sup>a</sup> School of Chemistry and Environment, South China Normal University; Guangzhou Key Laboratory of Materials for Energy Conversion and Storage, 510006, P.R. China, E-mail: linxm@scnu.edu.cn; caiyp@scnu.edu.cn <sup>b</sup> State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P.R. China

## Contents

- 1. Table S1 Selected bond lengths and angles for compounds 1-6
- 2. Fig. S1 Experimental and simulated PXRD patterns for 1 to 7.
- 3. Fig. S2 TGA curves of compounds 3, 5, 7 and activated
- 4. Fig. S3 N<sub>2</sub> adsorption/desorption isotherms of 3 (Sm-PDC) and 5 (Ho-PDC).
- 5. Fig. S4 Filtration experiment for 3 (Sm-PDC). The full square (■) represents the reaction with Sm-PDC as a catalyst. The open square (□) represents the reaction course after filtration of the catalyst at 2 hours.
- 6. Fig. S5 Recycling experiments.
- 7. Fig. S6 Powder X-ray patterns for 3 (Sm-PDC) before and after catalytic studies.

| Table S1 Selected bond lengths | $(\text{\AA})$ and bond angles (°) for 1-7 |
|--------------------------------|--------------------------------------------|
|--------------------------------|--------------------------------------------|

|                | Com        | ipound I             |            |
|----------------|------------|----------------------|------------|
| La(1)-O(6)#1   | 2.426(4)   | La(2')-O(2W)         | 3.025(11)  |
| La(1)-O(4)#2   | 2.426(4)   | O(6)#1-La(1)-O(9)#1  | 80.86(15)  |
| La(1)-O(9)#1   | 2.468(4)   | O(4)#2-La(1)-O(9)#1  | 83.64(15)  |
| La(1)-O(13)    | 2.524(5)   | O(6)#1-La(1)-O(13)   | 140.60(18) |
| La(1)-O(12)#3  | 2.543(4)   | O(4)#2-La(1)-O(13)   | 74.93(17)  |
| La(1)-O(1)     | 2.605(5)   | O(9)#1-La(1)-O(13)   | 125.67(19) |
| La(1)-O(7)#4   | 2.653(5)   | O(6)#1-La(1)-O(12)#3 | 76.20(15)  |
| La(1)-O(2)     | 2.719(4)   | O(4)#2-La(1)-O(12)#3 | 154.19(15) |
| La(1)-O(8)#4   | 2.821(4)   | O(9)#1-La(1)-O(12)#3 | 81.27(14)  |
| La(1)-La(2)    | 4.1536(11) | O(13)-La(1)-O(12)#3  | 130.80(16) |
| La(2)-O(10)    | 2.423(4)   | O(6)#1-La(1)-O(1)    | 75.73(16)  |
| La(2)-O(3)#5   | 2.471(4)   | O(4)#2-La(1)-O(1)    | 78.64(16)  |
| La(2)-O(5)     | 2.484(4)   | O(9)#1-La(1)-O(1)    | 152.51(15) |
| La(2)-O(8)#4   | 2.558(4)   | O(13)-La(1)-O(1)     | 69.42(19)  |
| La(2)-O(2W)    | 2.559(5)   | O(6)#1-La(1)-O(7)#4  | 148.96(16) |
| La(2)-O(2)     | 2.560(4)   | O(4)#2-La(1)-O(7)#4  | 100.92(18) |
| La(2)-O(1W)    | 2.583(5)   | O(9)#1-La(1)-O(7)#4  | 68.68(15)  |
| La(2)-O(11)#3  | 2.705(4)   | O(13)-La(1)-O(7)#4   | 67.43(19)  |
| La(2)-O(12)#3  | 2.791(4)   | O(12)#3-La(1)-O(7)#4 | 92.93(16)  |
| La(1')-O(13)   | 2.231(10)  | O(1)-La(1)-O(7)#4    | 135.23(17) |
| La(1')-O(7)#4  | 2.241(10)  | O(6)#1-La(1)-O(2)    | 92.68(15)  |
| La(1')-O(4)#2  | 2.297(9)   | O(4)#2-La(1)-O(2)    | 126.68(14) |
| La(1')-O(9)#1  | 2.393(9)   | O(9)#1-La(1)-O(2)    | 147.83(14) |
| La(1')-O(8)#4  | 2.718(9)   | O(13)-La(1)-O(2)     | 78.10(18)  |
| La(1')-O(6)#1  | 2.854(10)  | O(12)#3-La(1)-O(2)   | 66.60(13)  |
| La(1')-O(1)    | 2.870(9)   | O(1)-La(1)-O(2)      | 48.84(13)  |
| La(1')-O(12)#3 | 2.873(9)   | O(7)#4-La(1)-O(2)    | 109.79(14) |
| La(1')-O(2)    | 3.020(9)   | O(6)#1-La(1)-O(8)#4  | 138.84(15) |
| La(1')-La(2')  | 4.176(11)  | O(4)#2-La(1)-O(8)#4  | 140.33(16) |
| La(2')-O(8)#4  | 2.145(11)  | O(9)#1-La(1)-O(8)#4  | 100.21(14) |
| La(2')-O(10)   | 2.194(10)  | O(13)-La(1)-O(8)#4   | 70.93(16)  |
| La(2')-O(3)#5  | 2.227(10)  | O(12)#3-La(1)-O(8)#4 | 63.52(14)  |
| La(2')-O(2)    | 2.639(10)  | O(1)-La(1)-O(8)#4    | 106.86(14) |
| La(2')-O(11)#3 | 2.695(10)  | O(7)#4-La(1)-O(8)#4  | 47.17(13)  |

Symmetry transformations used to generate equivalent atoms: #1 x-1,y,z ,#2 -x-1,-y+1,-z+2 ,#3 -x,-y+1,-z+1 ,#4 x,y-

1,z #5 -x,-y+1,-z+2 , #6 x,y+1,z ,#7 x+1,y,z

| Compound 2           |            |                     |            |
|----------------------|------------|---------------------|------------|
| Pr(1)-O(7)#1         | 2.367(3)   | O(4)#2-Pr(1)-O(2)   | 78.76(13)  |
| Pr(1)-O(4)#2         | 2.411(4)   | O(4)#2-Pr(1)-O(2)   | 78.76(13)  |
| Pr(1)-O(10)          | 2.495(3)   | O(10)-Pr(1)-O(2)    | 70.65(12)  |
| Pr(1)-O(2)           | 2.514(3)   | O(7)#1-Pr(1)-O(1W)  | 138.55(14) |
| Pr(1)-O(1W)          | 2.514(4)   | O(4)#2-Pr(1)-O(1W)  | 132.21(14) |
| Pr(1)-O(2W)          | 2.558(4)   | O(11)#3-Pr(1)-O(1W) | 71.27(14)  |
| Pr(1)-O(6)           | 2.659(4)   | O(10)-Pr(1)-O(1W)   | 127.37(13) |
| Pr(1)-O(5)           | 2.769(4)   | O(2)-Pr(1)-O(1W)    | 71.38(13)  |
| Pr(2)-O(3)#4         | 2.376(4)   | O(4)#2-Pr(1)-O(2W)  | 128.24(14) |
| Pr(2)-O(12)#5        | 2.403(4)   | O(11)#3-Pr(1)-O(2W) | 71.05(14)  |
| Pr(2)-O(8)#6         | 2.422(3)   | O(10)-Pr(1)-O(2W)   | 140.91(13) |
| Pr(2)-O(13)          | 2.470(4)   | O(2)-Pr(1)-O(2W)    | 138.83(13) |
| Pr(2)-O(5)           | 2.492(3)   | O(1W)-Pr(1)-O(2W)   | 67.61(14)  |
| O(7)#1-Pr(1)-O(4)#2  | 77.97(13)  | O(2)-Pr(1)-O(6)     | 112.29(12) |
| O(7)#1-Pr(1)-O(11)#3 | 98.58(13)  | O(1W)-Pr(1)-O(6)    | 86.71(14)  |
| O(4)#2-Pr(1)-O(11)#3 | 73.92(13)  | O(2W)-Pr(1)-O(6)    | 69.18(14)  |
| O(7)#1-Pr(1)-O(10)   | 84.44(13)  | O(7)#1-Pr(1)-O(5)   | 119.15(11) |
| O(4)#2-Pr(1)-O(10)   | 72.28(13)  | O(4)#2-Pr(1)-O(5)   | 129.96(11) |
| O(11)#3-Pr(1)-O(10)  | 144.60(13) | O(11)#3-Pr(1)-O(5)  | 137.32(11) |
| O(7)#1-Pr(1)-O(2)    | 150.06(13) | O(10)-Pr(1)-O(5)    | 64.17(12)  |

Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z , #2 -x+1,-y+1,-z+1, #3 x,y+1,z ,#4 -

x,-y+1,-z+1 ,#5 x-1,y+1,z , #6 -x,-y+1,-z , #7 x,y-1,z, #8 x+1,y-1,z

#### Compound 3

| Sm(1)-O(3)#1       | 2.334(6)   | O(3)#1-Sm(1)-O(10)   | 98.7(2)    |
|--------------------|------------|----------------------|------------|
| Sm(1)-O(5)         | 2.404(6)   | O(5)-Sm(1)-O(10)     | 142.33(18) |
| Sm(1)-O(10)        | 2.445(6)   | O(3)#1-Sm(1)-O(12)#2 | 84.3(2)    |
| Sm(1)-O(12)#2      | 2.485(6)   | O(5)-Sm(1)-O(12)#2   | 72.2(2)    |
| Sm(1)-O(8)#3       | 2.507(6)   | O(10)-Sm(1)-O(12)#2  | 144.6(2)   |
| Sm(1)-O(2W)        | 2.509(6)   | O(3)#1-Sm(1)-O(8)#3  | 150.0(2)   |
| Sm(1)-O(1W)        | 2.543(7)   | O(5)-Sm(1)-O(8)#3    | 78.1(2)    |
| Sm(1)-O(1)         | 2.638(6)   | O(10)-Sm(1)-O(8)#3   | 92.8(2)    |
| Sm(1)-O(2)         | 2.752(6)   | O(12)#2-Sm(1)-O(8)#3 | 70.7(2)    |
| Sm(1)-Sm(2)        | 4.0932(9)  | O(3)#1-Sm(1)-O(2W)   | 138.9(3)   |
| Sm(2)-O(12)#2      | 2.815(6)   | O(5)-Sm(1)-O(2W)     | 131.6(2)   |
| Sm(2)-O(11)#2      | 2.586(6)   | O(10)-Sm(1)-O(2W)    | 71.4(2)    |
| O(3)#1-Sm(1)-O(5)  | 78.6(2)    | O(8)#3-Sm(1)-O(1W)   | 138.9(2)   |
| Sm(2)-O(8)#3       | 2.680(6)   | O(4)#5-Sm(2)-Sm(1)   | 115.05(16) |
| Sm(2)-O(12)#2      | 2.815(6)   | O(13)-Sm(2)-Sm(1)    | 90.78(18)  |
| O(6)#4-Sm(2)-Sm(1) | 161.55(16) | O(2)-Sm(2)-Sm(1)     | 40.96(13)  |
| O(9)#4-Sm(2)-Sm(1) | 104.74(15) | O(7)#3-Sm(2)-Sm(1)   | 86.20(14)  |

Symmetry transformations used to generate equivalent atoms: #1 -x+1/2,-y+3/2,-z; #2 x,y-1,z; #3 -x,y,-z+1/2; #4 x,y+1,z;

| Compound 4        |            |                    |            |
|-------------------|------------|--------------------|------------|
| Tb(1)-O(11)       | 2.339(3)   | O(8)-Tb(1)-O(3)#1  | 83.83(12)  |
| Tb(1)-O(1W)       | 2.360(3)   | O(11)-Tb(1)-O(2W)  | 78.22(12   |
| Tb(1)-O(2)        | 2.378(3)   | O(1W)-Tb(1)-O(2W)  | 71.31(13)  |
| Tb(1)-O(8)        | 2.380(3)   | O(2)-Tb(1)-O(2W)   | 133.49(12) |
| Tb(1)-O(3)#1      | 2.403(3)   | O(8)-Tb(1)-O(2W)   | 146.77(13) |
| Tb(1)-O(2W)       | 2.409(3)   | O(3)#1-Tb(1)-O(2W) | 74.87(12)  |
| Tb(1)-O(6)        | 2.444(3)   | O(11)-Tb(1)-O(6)   | 91.97(11)  |
| Tb(1)-O(5)        | 2.508(3)   | O(1W)-Tb(1)-O(6)   | 96.14(13)  |
| Tb(1)-O(7)        | 2.881(3)   | O(2)-Tb(1)-O(6)    | 73.97(12)  |
| Tb(2)-O(7)        | 2.317(3)   | O(8)-Tb(1)-O(6)    | 127.49(11) |
| Tb(2)-O(1)        | 2.353(3)   | O(3)#1-Tb(1)-O(6)  | 145.37(12) |
| Tb(2)-O(9)#2      | 2.501(3)   | O(2W)-Tb(1)-O(6)   | 70.54(12)  |
| Tb(2)-O(11)       | 2.770(3)   | O(11)-Tb(1)-O(5)   | 137.16(11) |
| O(11)-Tb(1)-O(1W) | 143.59(12) | O(1W)-Tb(1)-O(5)   | 71.86(12)  |
| O(11)-Tb(1)-O(2)  | 73.93(12)  | O(2)-Tb(1)-O(5)    | 73.63(11)  |
| O(1W)-Tb(1)-O(2)  | 142.34(12) | O(8)-Tb(1)-O(5)    | 77.07(11)  |
| O(11)-Tb(1)-O(8)  | 122.89(11) | O(3)#1-Tb(1)-O(5)  | 143.45(11) |
| O(1W)-Tb(1)-O(8)  | 78.52(12)  | O(2W)-Tb(1)-O(5)   | 105.55(12) |
| O(2)-Tb(1)-O(8)   | 79.52(12)  | O(6)-Tb(1)-O(5)    | 52.40(10)  |

Symmetry transformations used to generate equivalent atoms: #1 -x,y+1/2,-z-1/2, #2 x-1,y,z ,#3 -x,y-1/2,-z-1/2

### #4 x+1,y,z

### Compound 5

| Ho(1)-O(7)         | 2.301(3)   | O(7)-Ho(1)-O(13)   | 147.25(11) |
|--------------------|------------|--------------------|------------|
| Ho(1)-O(4)#1       | 2.344(3)   | O(4)#1-Ho(1)-O(13) | 72.67(11)  |
| Ho(1)-O(1)         | 2.360(3)   | O(1)-Ho(1)-O(13)   | 138.14(11) |
| Ho(1)-O(13)        | 2.374(3)   | O(1W)-Ho(1)-O(13)  | 74.21(13)  |
| Ho(1)-O(1W)        | 2.368(4)   | O(7)-Ho(1)-O(12)   | 134.16(12) |
| Ho(1)-O(12)        | 2.412(3)   | O(4)#1-Ho(1)-O(12) | 145.50(12) |
| Ho(1)-O(10)        | 2.438(3)   | O(1)-Ho(1)-O(12)   | 75.61(11)  |
| Ho(1)-O(11)        | 2.484(3)   | O(1W)-Ho(1)-O(12)  | 99.23(13)  |
| Ho(1)-O(9)         | 2.766(3)   | O(13)-Ho(1)-O(12)  | 72.91(12)  |
| Ho(2)-O(9)         | 2.327(3)   | O(7)-Ho(1)-O(10)   | 125.17(11) |
| Ho(2)-O(3W)        | 2.347(3)   | O(4)#1-Ho(1)-O(10) | 89.88(12)  |
| Ho(2)-O(8)         | 2.366(3)   | O(1)-Ho(1)-O(10)   | 74.78(12)  |
| O(7)-Ho(1)-O(4)#1  | 79.22(12)  | O(1W)-Ho(1)-O(10)  | 145.44(12) |
| O(7)-Ho(1)-O(1)    | 74.04(11)  | O(13)-Ho(1)-O(10)  | 71.92(12)  |
| O(4)#1-Ho(1)-O(1)  | 132.02(11) | O(12)-Ho(1)-O(10)  | 77.27(11)  |
| O(7)-Ho(1)-O(1W)   | 82.09(13)  | O(7)-Ho(1)-O(11)   | 84.89(11)  |
| O(4)#1-Ho(1)-O(1W) | 73.57(13)  | O(13)-Ho(1)-O(10)  | 71.92(12)  |
| O(1)-Ho(1)-O(1W)   | 138.38(13) | O(12)-Ho(1)-O(10)  | 77.27(11)  |

Symmetry transformations used to generate equivalent atoms: #1 -x,y+1/2,-z-1/2 ,#2 x-1,y,z ,#3 -x,y-1/2,-z-1/2,

| Compound 6           |           |                     |           |  |
|----------------------|-----------|---------------------|-----------|--|
| Er(1)-O(12)          | 2.240(11) | O(11)#2-Er(1)-O(2)  | 74.2(5)   |  |
| Er(1)-O(5)           | 2.246(11) | O(12)-Er(1)-O(1W)   | 86.5(4)   |  |
| Er(1)-O(6)#1         | 2.281(11) | O(5)-Er(1)-O(1W)    | 73.2(4)   |  |
| Er(1)-O(11)#2        | 2.384(13) | O(6)#1-Er(1)-O(1W)  | 138.4(5)  |  |
| Er(1)-O(2)           | 2.392(10) | O(11)#2-Er(1)-O(1W) | 73.7(5)   |  |
| Er(1)-O(1W)          | 2.401(10) | O(2)-Er(1)-O(1W)    | 127.5(3)  |  |
| Er(1)-O(2W)          | 2.452(11) | O(12)-Er(1)-O(2W)   | 72.3(4)   |  |
| Er(1)-O(1)           | 2.524(10) | O(5)-Er(1)-O(2W)    | 83.7(4)   |  |
| Er(1)-O(1)           | 2.524(10) | O(6)#1-Er(1)-O(2W)  | 71.8(5)   |  |
| O(12)-Er(1)-O(5)     | 152.3(2)  | O(11)#2-Er(1)-O(2W) | 139.0(5)  |  |
| O(12)-Er(1)-O(6)#1   | 104.1(4)  | O(2)-Er(1)-O(2W)    | 146.6(3)  |  |
| O(5)-Er(1)-O(6)#1    | 80.7(5)   | O(1W)-Er(1)-O(2W)   | 73.6(2)   |  |
| O(12)-Er(1)-O(11)#2  | 81.6(4)   | O(12)-Er(1)-O(1)    | 76.0(4)   |  |
| O(5)-Er(1)-O(11)#2   | 109.6(4)  | O(5)-Er(1)-O(1)     | 131.3(4)  |  |
| O(6)#1-Er(1)-O(11)#2 | 146.9(3)  | O(6)#1-Er(1)-O(1)   | 78.2(5)   |  |
| O(12)-Er(1)-O(2)     | 127.9(4)  | O(11)#2-Er(1)-O(1)  | 71.5(5)   |  |
| O(5)-Er(1)-O(2)      | 79.9(4)   | O(2)-Er(1)-O(1)     | 52.82(18) |  |
| O(6)#1-Er(1)-O(2)    | 77.0(4)   | O(1W)-Er(1)-O(1)    | 142.9(3)  |  |

 $Symmetry\ transformations\ used\ to\ generate\ equivalent\ atoms:\ \#1\ x,-y+1,z-1/2\ ,\ \#2\ x,-y+1,z+1/2\ \#5\ -x+2,-y+1,-z.$ 

Compound 7

| Lu(1)-O(5)#1         | 2.205(13) | O(6)-Lu(1)-O(1)     | 76.0(5)  |
|----------------------|-----------|---------------------|----------|
| Lu(1)-O(9)           | 2.235(12) | O(10)#1-Lu(1)-O(1)  | 75.0(5)  |
| Lu(1)-O(6)           | 2.267(13) | O(5)#1-Lu(1)-O(1W)  | 73.4(5)  |
| Lu(1)-O(10)#1        | 2.346(14) | O(9)-Lu(1)-O(1W)    | 86.9(5)  |
| Lu(1)-O(1)           | 2.384(13) | O(6)-Lu(1)-O(1W)    | 136.2(6) |
| Lu(1)-O(1W)          | 2.393(13) | O(10)#1-Lu(1)-O(1W) | 75.0(6)  |
| Lu(1)-O(2W)          | 2.432(12) | O(1)-Lu(1)-O(1W)    | 128.9(4) |
| Lu(1)-O(2)           | 2.483(13) | O(5)#1-Lu(1)-O(2W)  | 83.4(5)  |
| Ag(1)-N(1)           | 2.149(6)  | O(9)-Lu(1)-O(2W)    | 72.2(5)  |
| Ag(1)-N(1)#3         | 2.149(5)  | O(6)-Lu(1)-O(2W)    | 70.1(6)  |
| O(5)#1-Lu(1)-O(9)    | 152.3(3)  | O(10)#1-Lu(1)-O(2W) | 140.8(6) |
| O(5)#1-Lu(1)-O(6)    | 79.2(5)   | O(1)-Lu(1)-O(2W)    | 144.0(4) |
| O(9)-Lu(1)-O(6)      | 103.8(5)  | O(1W)-Lu(1)-O(2W)   | 73.4(3)  |
| O(5)#1-Lu(1)-O(10)#1 | 109.0(5)  | O(5)#1-Lu(1)-O(2)   | 130.4(5) |
| O(9)-Lu(1)-O(10)#1   | 83.6(5)   | O(9)-Lu(1)-O(2)     | 76.4(5)  |
| O(6)-Lu(1)-O(10)#1   | 147.4(3)  | O(6)-Lu(1)-O(2)     | 77.7(6)  |
| O(5)#1-Lu(1)-O(1)    | 78.6(5)   | O(1)-Lu(1)-O(2)     | 53.4(2)  |
| O(9)-Lu(1)-O(1)      | 129.1(5)  | O(1W)-Lu(1)-O(2)    | 145.5(4) |
|                      |           |                     |          |

Symmetry transformations used to generate equivalent atoms: #1 x,-y+2,z+1/2 , #2 x,-y+2,z-1/2



Fig. S1 Experimental and simulated PXRD patterns for 1 to 7.



Fig. S2 TGA curves of compounds 3, 5, 7 and activated 3.



Fig. S3  $N_2$  adsorption/desorption isotherms of 3 (Sm-PDC) and 5 (Ho-PDC).



Fig. S4 Filtration experiment for 3 (Sm-PDC). The full square (■) represents the reaction with Sm-PDC as a catalyst. The open square (□) represents the reaction course after filtration of the catalyst at 2 hours.



Fig. S5 Recycling experiments.



Fig. S6 Powder X-ray patterns for 3 (Sm-PDC) before and after catalytic studies.