Supporting Information

Modulation of opto-electronic properties of InSe thin layers via phase

transformation

Makkawi Osman,^a Yanmin Huang,^a Wei Feng,^a Guangbo Liu,^a Yunfeng Qiu^{a,*}

PingAn Hu^{a, b, *}

^a Key Lab of Microsystem and Microstructure of Ministry of Education, Harbin Institute

of Technology, School of Materials Science and Engineering, No. 2 YiKuang Street,

Harbin, 150080, China. E-mail: <u>hupa@hit.edu.cn</u>; <u>giuyf@hit.edu.cn</u>

^b State Key Laboratory of Robotics and System (HIT), Harbin Institute of Technology, Harbin, Heilongjiang 150080, China.

Figure S1. (a to f) AFM images of InSe nanosheets with different thickness of 11, 13, 15, 18, 21, and 24 nm. Insets are corresponding height profiles.

Figure S2. Intensity ratios of $I_{(0 0 6)}$ of γ - In₂Se₃ to the other peaks of β -InSe.

Figure S3. (a and b) Raman modes of annealed sheets at 300°C and 400°C, respectively. The thickness from bottom to top as indicated by dotted arrows in both a and b are about 6, 9, 11, 13, 15, 18, 21, and 24 nm, respectively. (c) Intensity of A_1 mode at 117 cm⁻¹ as a function of thickness in as-exfoliated sheet and annealed sheets at 200, 300, and 400 °C.

Figure S4. EDS spectrum of as-exfoliated InSe nanosheets.

Samples	Atomic percentage In (%)	Atomic percentage Se (%)	Atomic ratio of In/Se
As-exfoliated	52.4	47.6	1.10
Annealed at 200 °C	47.2	52.8	0.87
Annealed at 300 °C	45.9	54.1	0.84
Annealed at 400 °C	45.3	54.7	0.83

b a 300 ⁰C 400 ^oC Intensity (a.u.) Intensity (a.u.) γ-In₂Se₃ γ-In_,Se_, β-InSe β-InSe 1.8 2.0 2.2 1.2 1.4 1.6 1.8 2.0 2.2 1.2 1.4 1.6 2.4 2.4 Photon energy (eV) ğ Photon energy (eV) Intensity(I,) (a.u.) O -**G**-200 °C 1.5 -**с**- 200 °С Intensity ratio (I/I 300 °C -**O-** 300 °C 1.4 -_____400 °C 1.3 1.2 1.1 1.0 8 1012141618202224 8 1012141618202224 4 6 6 Thickness (nm) Thickness (nm)

Figure S5. PL spectra of as-exfoliated InSe nanosheets and annealed sheets at 300 °C and 400 °C, respectively. The thickness from bottom to top as indicated by dotted arrows in both a and b are about 6, 9, 11, 13, 15, 18, 21, and 24 nm, respectively. (c)

PL peak intensity of γ - In₂Se₃ as a function of thickness. (d) Intensity ratio of $\frac{I_{\gamma}}{I_{\beta}}$ versus thickness at different annealing temperatures.

Table S1. Element composition and In/Se ratio of as-exfoliated and annealed sheets.

Figure S6. (a) Absorption and (b) transmission spectra of as-exfoliated InSe (black curve) and annealed samples at 200 (red curve) and 400 °C (blue curve), respectively. InSe is exfoliated on the surface of quartz substrate.

Figure S7. (a) Optical image of InSe photodetector. (b) Photocurrents of as-exfoliated and annealed devices as a function of wavelength.

Photodetector	On/off ratio	Carrier mobility	Photocurrent	Responsivity	Detectivity	Quantum efficiency (EQE)
		$(cm^2 v^{-1} s^{-1})$	(µA)	(A/W)	(Jones)	(W/A)
As-exfoliated InSe nanosheet	5.51×10^{4}	10.32	0.182	12.54×10^4	1.72×10^{15}	31.82×10^{4}
Annealed InSe nanosheet	7.42×10^{3}	2.37	0.0732	$5.05 imes 10^4$	1.30×10^{15}	12.82×10^4

 Table S2. Photodetector parameters of as-exfoliated and annealed sheet.