Supporting Information

For

White electroluminescence from Single Polymer System: Phenothiazine derivatives as red emissive dopant and Polyfluorene as blue host

Sandu Nagarajuac, Ezhakudiyan Ravindran ${ }^{a}$, Elumalai Varathan ${ }^{a b c}$, Venkatesan Subramanian ${ }^{a b c}$, Narayanasastri Somanathan*abc

CSIR-Central Leather Reaserch Institute (CSIR)-CLRI, Adyar, Chennai, 600 020, India. E-mail: nsomanathan@rediffmail.com; Fax: +91-44-24911589; Tel: +91-44-24437189.
b CSIR-Network of Institutes for Solar Energy, India.
c Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhavan, 2 Rafi Marg, New Delhi 110001, India.

Synthesis procedure for monomer and copolymers

Synthesis of 10-(2-ethyl hexyl)-10H-phenothiazine (PTZ-C8 \mathbf{H}_{17})

3-Bromooctane $(16.58 \mathrm{~g}, \quad 100.36 \mathrm{mmol})$, phenothiazine $(10 \mathrm{~g}, \quad 50.18 \mathrm{mmol})$, sodium hydroxide ($20 \mathrm{~g}, 500 \mathrm{mmol}$), and dimethyl sulfoxide (DMSO) were placed in 500 ml two neck round bottom flask, and then, this mixture was extracted with dichloromethane (DCM)/brine and then dried with sodium sulphate .The resulting liquid was purified by column chromatography. The product yield was $67 \%(9.53 \mathrm{~g})$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26-7.16(\mathrm{~m}, 4 \mathrm{H}), 6.97(\mathrm{dd}, J=9.7,3.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.80(\mathrm{~s}, 2 \mathrm{H}), 2.01(\mathrm{~s}, 1 \mathrm{H})$,
$1.48(\mathrm{dd}, J=15.3,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.35(\mathrm{~m}, 4 \mathrm{H}), 0.95(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 6 \mathrm{H})$.
$\mathrm{C}^{13} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.85,127.60,127.12,125.88,122.37,115.92,51.06,35.83,30.79,28.64,24.10$,
23.12, 14.19 and 10.56

Synthesis of 10-(2-ethyl hexyl)-10H-phenothiazine-3-carbaldehyde (PTZ-CHO)

To a solution of 10 -ethyl hexyl $10-\mathrm{H}$-phenothiazine ($10 \mathrm{~g}, 31,45 \mathrm{mmol}$) and dry N, N Dimethylformamide (DMF) ($2.9 \mathrm{ml}, 37.74 \mathrm{mmol}$) in 1,2-dichloroethane 50 ml kept $0^{\circ} \mathrm{C}$ (ice water bath), $\operatorname{pocl}_{3}(3.52 \mathrm{ml}, 37.74 \mathrm{mmol})$ was added slowly. After the addition was complete the mixture was heated over night of reflux. The reaction mixture was quenched with water and extracted three times with chloroform. The combined organic fractions were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under the reducing pressure and residue was purified by silica gel column chromatography using petroleum ether (P.E)-Ethyl Acetate (E.A) $(8 / 2, \mathrm{~V} / \mathrm{v})$ as the eluent to give yellow liquid yield- 90%.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.87(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{dd}, J=8.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=1.9$
$\mathrm{Hz}, 1 \mathrm{H}), 7.16(\mathrm{td}, J=8.8,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{td}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=10.0,8.5$
$\mathrm{Hz}, 2 \mathrm{H}), 3.81(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{dt}, J=12.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~m}, 4 \mathrm{H}), 1.26(\mathrm{~m}, 4 \mathrm{H}), 0.86(\mathrm{~d}, J$ $=7.3 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.15,151.53,144.04,131.12,129.89,128.76,127.79$, $127.49,126.21,124.93,123.63,116.61,115.50,51.46,35.96,30.56,28.49,23.91,23.01$, 13.99 and 10.45. Elemental analysis calculated (\%) for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NOS}$: C, 74.11; H, 7.35; N, 4.11; S, 9.4; O, 4.7; Found, C, 73.5; H, 7.0; N, 4.0; S, 9.5; O, 4.5. ESI mass calculated for $\mathrm{C}_{21} \mathrm{H}_{25}$ NOS 339.5; Found, 340

Synthesis of 7-bromo-10-(octyl-3-yl)-10H-phenothiazine-3-carbaldehyde (PTZ-Br)

10-Ethyl hexyl 10 H -phenothiazine 3 -carbaldehyde $(3.4 \mathrm{~g}, 10 \mathrm{mmol})$ and $(0.5 \mathrm{~g}, 12 \mathrm{mmol})$ of NaOH were dissolved in the mixture of 40 ml of DCM and 45 ml of acetic acid. 10 ml of acetic acid containing $(0.62 \mathrm{ml}, 12 \mathrm{mmol})$ of bromine was added into the solution that was kept in an ice bath and then the mixture was taken out and stirred for 24 h at room temp. 300 ml of water was poured to stop the reaction and the mixture was extracted with DCM, then the product was purified by flash chromatography P.E/E.A-5:1V/v.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.81(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{dd}, J=8.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.27(\mathrm{dd}, J=5.7,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.75(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 10 \mathrm{H}),(1.28(\mathrm{~m}, 1 \mathrm{H}), 0.86(\mathrm{td}, J=7.4,4.6 \mathrm{~Hz}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.00,151.08,143.26,131.40,130.24,130.07,130.03$, $128.79,127.20,125.54,117.72,115.85,115.69,51.58,35.96,30.91,30.52,23.86,22.98$,
13.96 and 10.41. Elemental analysis calculated (\%) for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{BrNOS} ; \mathrm{C}, 60.28 ; \mathrm{H}, 5.78 ; \mathrm{Br}$, 19.10; N, 3.35; S, 7.66; O, 3.82; Found; C,61.0; H, 5.5; Br, 19.0; N, 3.5; S, 7.5; ESI mass calculated for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{BrNOS} 418$; Found, 418.3

Synthesis of 7,7'-(benzo[c][1,2,5]thiadiazole-4,7-diyl)bis(10-(2-ethylhexyl)-10H-phenothiazine-3-carbaldehyde) (BTPTZ-CHO)

(1.07 grams 1.2 mmol) of 7-bromo-10-(octyl-3-yl)-10H-phenothiazine-3-carbaldehyde and 2,1,3-benzothiadiazole 4,7-diboronic ester $(0.5 \mathrm{~g}, 0.6 \mathrm{mmol})$ was taken in 2 neck 100 ml R.B and dissolved in Tetrahydrofuran (THF), 20 ml of $2 \% \mathrm{k}_{2} \mathrm{CO}_{3}$ solution was added. The temperature was reached to $60^{\circ} \mathrm{c}$ then $\mathrm{Pd}\left(\mathrm{Pph}_{3}\right)_{4}(138 \mathrm{mg}, 0.24)$ was added to the reaction mixture under nitrogen atmosphere after that again 10 ml of THF was added. The reaction temperature $85^{\circ} \mathrm{c}$ was maintained after reaction completed the reaction mixture was poured into 250 ml beaker containing 100 ml distilled water and extracted with chloroform. The crude product was separated by column chromatography by using 10% E.A and hexane

Chemical shift; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.75(\mathrm{~s}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=20.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.69-$ 7.53 (m, 6H), 6.95 (dd, $J=32.4,6.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.79$ (d, 4H), 1.93 (m, 2H), 1.56-1.22 (m, $16 \mathrm{H}), 0.81(\mathrm{~m}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 190.15,153.85,151.03,144.26,132.79,131.51,131.30$, $130.01,128.85,128.47,128.18,127.36,125.94,125.10,116.50,115.65,51.54,36.02,30.60$, 28.52, 23.91, 23.08, 14.05 and 10.48 .

Elemental analysis calculated (\%) for $\mathrm{C}_{48} \mathrm{H}_{49} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{3}$: C, 71.16; H, 6.10; N, 6.92; S, 11.87; O, 3.95; Found C, 71.0 ; H, $6.2 ; \mathrm{N}, 7.0 ; \mathrm{S}, 11.9 ; \mathrm{O}, 4.0$. ESI mass calculated for $\mathrm{C}_{48} \mathrm{H}_{49} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{3}$ 810.12; Found, 810.

Synthesis of 3,3 '-(7,7 ' (benzo1,2,5 thiadiazole-4,7 diyl)bis(10-octyl-10H-phenothiazine-

7,3-diyl)bis(2-(4-bromo phenyl)acrylonitrile) (BTZPZP)

7,7’(benzoc 1,2,5thiadiazole-4,7-diyl)bis(10-octyl-10H-phenothiazine-3-carbaldehyde) (1g, 0.59 mmol) , 4-bromo phenyl acetonitrile $(0.68 \mathrm{~g}, 1.77 \mathrm{mmol})$ and potassium tertiary but oxide (396mg, 1.77) taken 100 ml of single necked R.B. These all reactants were dissolved in 30 ml of methanol and 10 ml of THF, the reaction mixture was reflux for 12 hours. After that precipitate was formed. This precipitate was filter and washed with 2 to 3 times with ethanol. After filtration compound was dried by using vaccum oven.

Chemicalshift; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85(\mathrm{t}, 4 \mathrm{H}), 7.80(\mathrm{~d}, 2 \mathrm{H}), 7.72(\mathrm{~s}, 2 \mathrm{H}), 7.62(\mathrm{~d}$, $2 \mathrm{H}), 7.52(\mathrm{q}, 8 \mathrm{H}), 7.35(\mathrm{~s}, J=18.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 3.70(\mathrm{~d}, 4 \mathrm{H}), 2.0(\mathrm{~m}, 2 \mathrm{H}), 1.4-1.5(\mathrm{~m}, 4 \mathrm{H}), 1.25-1.33(\mathrm{~m}, 12 \mathrm{H}), 0.90(\mathrm{~m}, J=9.5,6.3$ $\mathrm{Hz}, 12 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (400 MHz, CDCl_{3}) δ 153.86, 147.52, 144.53, 141.13, 133.72, 132.43, 132.34, $132.15,131.34,130.54,128.92,128.66,128.39,128.10,127.93,127.24,125.63,124.90$, $122.91,118.12,116.20,115.93,107.39,51.24,31.97,30.66,29.73,29.70,29.41,28.58$, $23.96,23.13,22.75,14.21,14.11,10.54$

Elemental Analysis, calculated (\%): C, 76.3; H, 5.76; N, 8.35; S, 9.54: Found (\%): C,76.0: H.9.0: N, 8.2: S, 9.3 MALDI mass calculated m/z: Calculated for $\mathrm{C}_{64} \mathrm{H}_{58} \mathrm{Br}_{2} \mathrm{~N}_{6} \mathrm{~S}_{3}: 1164$,found:1166.

Polymerization

A series of copolymers were synthesised by using Suzuki poly condensation reaction using different composition of feed ratio of the BTZPZP monomer and co-monomers (Different feed ration in Table S 1). The obtained conjugated copolymers with different BTZPZP to fluorene ratios and their M_{n} and poly dispersity index (PDI) values are in Table S1. The corresponding copolymers labelled as BTZPZP 0.125 , BTZPZP 0.25 , BTZPZP 0.5 , BTZPZP 1, BTZPZP 2.5, and BTZPZP 5 (Scheme 1). In a representative controlled synthetic procedure ($23.3 \mathrm{mg}, 0.02 \mathrm{mmol}$) of BTZPZP along with ($180 \mathrm{mg}, 0.38 \mathrm{mmol}$) of 9,9-dihexyl -2,7-dibromoflourene and ($200 \mathrm{mg}, 0.4 \mathrm{mmol}$) of 9,9-dihexylfluorene -2,7-diboronic acid (1,3propane diol) ester was dissolved in 50 ml of (THF). To the above mixture of reactant, (25 ml) 2% potassium carbonate solution was added; the resulting mixture was degassed with nitrogen on heating when the reaction mixture temperature reached to $50^{\circ} \mathrm{C}$, catalytic amount of Tetrakis triphenyl phosphine palladium (0) was added to the reaction mixture under the nitrogen condition the mixture of the content was refluxed with constant stirring for 72 hours. The resulting mixture was concentrated under vaccum and redissloved in chloroform. The chloroform solution was washed with 3 N HCL solution and water. The organic layer was separated and concentrated through rotary evaporator to get crude product of copolymer BTZPZP-5 Copolymer. The resulting crude product was purified through reprecipitation from the concentrated chloroform solution with methanol to get red precipitate, dried and weighed. Yield 69%.

1H NMR (CDCl3, 400MHz, ppm): $\delta 0.65-2.05(\mathrm{~m} 4 \mathrm{H}), 7.3(\mathrm{~m}, 5 \mathrm{H}), 7.42(\mathrm{~m}, 7 \mathrm{H}), 7.55-7.65$ $(\mathrm{m}, 14 \mathrm{H})$ and $7.70-7.80(\mathrm{~m}, 5 \mathrm{H}), 2.0-1.78(\mathrm{~m}, 20 \mathrm{H}), 0.7-1.5(\mathrm{~m}-110 \mathrm{H})$ Elemental Analysis, calculated (\%): C, 88.43; H, 9.10; N, 1.14; S, 1.31.

Found (\%):C, 88.22; H, 9.05; N, 1.08; S, 1.25

BTZPZP-2.5 Copolymer: ($11.27 \mathrm{mg}, 0.01 \mathrm{mmol}$) of BTZPZP along with ($180 \mathrm{mg}, 0.38 \mathrm{mmol}$) of 9,9'dihexyl -2,7-dibromofluorene and ($200 \mathrm{mg}, 0.4 \mathrm{mmol}$) of 9,9-dihexyl-2,7-diboronic acid (1,3-propane diol) ester were used in the polymerisation, Yield 78%.

1H NMR (CDCl3, 400MHz, ppm): $80.62-2.1(\mathrm{~m}, 140 \mathrm{H}), 7.25(\mathrm{~m}, 4 \mathrm{H}), 7.41(\mathrm{~m}, 6 \mathrm{H}), 7.45-$ $7.60(\mathrm{~m}, 8 \mathrm{H})$ and 7.70-7.80 (m, 10H), Elemental analysis, Calculated (\%): C, 89.36; H, 9.36; N, 0.60; S, 0.68 .

Found (\%):C, 89.12; H, 9.25; N, 0.57; S, 0.63.
BTZPZP-1 Copolymer: $(5.77 \mathrm{mg}, 0.049 \mathrm{mmol})$ of BTZPZP along with $(243 \mathrm{mg}, 0.495 \mathrm{mmol})$ of 9,9 'dihexyl -2,7-dibromofluorene and ($250 \mathrm{mg}, 0.5 \mathrm{mmol}$) of 9,9 -dihexyl-2,7-diboronic acid (1,3-propane diol) ester were used in the polymerisation, Yield 74%.

1H NMR (CDCl3, 400MHz, ppm): 80.67-2.15 (m, 148H), 7.27 (m, 2H), $7.42(\mathrm{~m}, 6 \mathrm{H}), 7.5-$ $7.65(\mathrm{~m}, 10 \mathrm{H})$ and $7.75-7.85(\mathrm{~m}, 14 \mathrm{H})$, Elemental analysis, Calculated (\%): C, 89.94; H, 9.52. Found (\%): C, 89.79; H, 9.42

BTZPZP-0.5 Copolymer: ($2.33 \mathrm{mg}, 0.02 \mathrm{mmol}$) of BTZPZP along with ($195.8 \mathrm{mg}, 0.4 \mathrm{mmol}$) of 9,9'dihexyl -2,7-dibromofluorene and ($250 \mathrm{mg}, 0.5 \mathrm{mmol}$) of 9,9-dihexyl-2,7-diboronic acid (1,3-propane diol) ester were used in the polymerisation, Yield 76%.

1H NMR (CDCl3, 400MHz, ppm): $80.63-2.08(\mathrm{~m}, 164 \mathrm{H}), 7.35(\mathrm{t}, 2 \mathrm{H}), 7.40(\mathrm{t}, 4 \mathrm{H}), 7.55-7.6$ $(\mathrm{m}, 5 \mathrm{H})$ and 7.70-7.80 (m, 8H), Elemental analysis, Calculated (\%): C, 90.1; H, 9.58. Found (\%): C, 90.15; H, 9.62

BTZPZP-0.25 Copolymer: (1.16mg, 0.001 mmol) of BTZPZP along with (196.3mg, 0.399 mmol) of 9,9 'dihexyl $-2,7$-dibromofluorene and ($200 \mathrm{mg}, 0.4 \mathrm{mmol}$) of 9,9 -dihexyl-2,7diboronic acid (1,3-propane diol) ester were used in the polymerisation, Yield 69%. 1H NMR (CDCl3, 400MHz, ppm): $80.56-2.10(\mathrm{~m}, 180 \mathrm{H}), 7.27(\mathrm{t}, 8 \mathrm{H}), 7.42(\mathrm{t}, 6 \mathrm{H}), 7.57-7.67$ $(\mathrm{m}, 10 \mathrm{H})$ and 7.72-7.80 (m, 12H), Elemental analysis, Calculated (\%): C, 90.25; H, 9.60. Found (\%): C, 90.37, H, 9.62

BTZPZP-0.125 Copolymer: ($0.73 \mathrm{mg}, 0.0006 \mathrm{mmol}$) of BTZPZP along with $(245.6 \mathrm{mg}$, 0.499 mmol) of 9,9 'dihexyl $-2,7$-dibromofluorene and ($250 \mathrm{mg}, 0.5 \mathrm{mmol}$) of 9,9 -dihexyl-2,7diboronic acid (1,3-propane diol) ester were used in the polymerisation, Yield 74%.

1H NMR (CDCl3, 400MHz, ppm): $80.55-2.2$ (m, 220H), 7.32 (t, 12H), 7.42 (t, 6 H$), ~ 7.55-7.65$ $(\mathrm{m}, 12 \mathrm{H})$ and 7.70-7.80 (m, 18H), Elemental analysis, Calculated (\%): C, 90.30; H, 9.6. Found (\%): C, 90.25, H, 9.58

Table S1.Feed ratio, composition and GPC data of copolymers

Polymer	Feed ratio $^{\mathbf{a}}$		Calculated values		
	BTZPZP	M Mw/Mn/PDI			
BTZPZP 0.125	0.00125	0.50	0.49875	0.00105	$5578 / 4950 / 1.13$
BTZPZP 0.25	0.0025	0.50	0.4975	0.00213	$4655 / 4412 / 1.05$
BTZPZP 0.5	0.005	0.50	0.495	0.00439	$9265 / 6343 / 1.46$
BTZPZP 1.0	0.01	0.50	0.49	0.00941	$12990 / 7228 / 1.80$
BTZPZP 2.5	0.025	0.50	0.475	0.0219	$8799 / 6502 / 1.35$
BTZPZP 5.0	0.05	0.50	0.45	0.0469	$8434 / 6350 / 1.43$

${ }^{\text {a }}$ BTZPZP, mole fraction of BTZPZP; M, mole fraction of 9,9-Dihexylfluorene-2,7-diboronic acid bis(pinacol) ester; N, mole fraction of 9,9-Dihexyl-2,7-dibromofluorene. ${ }^{\mathrm{b}}$ Mw, Weight Averaged molecular weight; Mn, number averaged molecular weight; PDI, Polydispersity Index.

Figure S1-H ${ }^{1}$ NMR spectrum of PTZ- $\mathrm{C}_{8} \mathrm{H} 17$
Figure S2-C ${ }^{13}$ NMR spectrum of $\mathrm{PTZ}-\mathrm{C}_{8} \mathrm{H} 17$

Figure S3-H ${ }^{1}$ NMR spectrum of PTZ-CHO

Figure S4-C ${ }^{13}$ NMR spectrum of PTZ-CHO

Figure S5- ESI mass spectrum of PTZ-CHO

SNR-26Z.001.001.1r.esp VerticalScaleFactor $=1$

Figure S6-H ${ }^{1}$ NMR spectrum of PTZ-Br

Figure $\mathbf{S 7} 7-{ }^{13}$ NMR spectrum of $\mathrm{PTZ}-\mathrm{Br}$

Figure S8-ESI mass spectrum of PTZ-Br
;NR-28.001.001.1r.esp VerticalScaleFactor $=1$

Figure S9-H ${ }^{1}$ NMR spectrum of BTPTZ-CHO

Figure S10-C ${ }^{13}$ NMR spectrum of BTPTZ-CHO

Figure S11-ESI mass spectrum of BTPTZ-CHO

Figure S12-H ${ }^{1}$ NMR spectrum of BTZPZP

Figure S13-C ${ }^{13}$ NMR spectrum of BTZPZP

Figure S-14 Maldi mass spectrometry for BTZPZP

Figure S-15 AFM image for BTZPZP monomer.

Figure S-16 Histogram of the height distribution of P-BTZPZP copolymers. a) P-BTZPZP-
0.125 , b) P-BTZPZP-0.25, C) P-BTZPZP-0.5, d) P-BTZPZP-1, e) P-BTZPZP-2.5 and f) P-

Statistical analysis of P-BTZPZP copolymers from AFM images

Figure 16:H1 NMR Spectrum of $\mathrm{P}(\mathrm{BTZPZP})$ - COPOLYMERS

Figure 17: Optimized geometry at B3LYP/6-31G* level of theory. The Hydrogen atoms omitted here for clarity

Computational Details:

The ground and excited state geometries of the two systems were optimized by using density functional theory (DFT) based method with Becke's three-parameter functional and the Lee-Yang-Parr functional (B3LYP) ${ }^{1-2}$ functional with $6-31 G^{*}$ basis set. Frequency calculations were also executed at the same level of theory. The optimizations and the vibrational data confirmed that the structures were true minima on the potential energy surface because there were no imaginary frequencies. On basis of gas phase optimized ground and excited state geometries, the absorption and emission spectral properties in chloroform (CHCl 3) were calculated by time dependant density functional theory (TD-DFT) method with Polarizable Continuum Model (PCM) at B3LYP 6-31G* level. All calculations were performed using Gaussian 09 program package ${ }^{3}$.

Reference:

1. Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
2. Lee, B.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789.
3. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009. Gaussian 09 Revision A.02, Gaussian Inc. Wallingford CT 2009.
