Supporting information

In-situ grown Nb_4N_5 nanocrystal on nitrogen-doped graphene as a novel anode for lithium ion battery

Chenlong Dong^{a,c}, Xin Wang^a, Xiangye Liu^a, Xiaotao Yuan^a, Wujie Dong^a, Houlei Cui^b, Yuhang Duan^c, Fuqiang Huang^{a, b,*}

^a State Key Laboratory of Rare Earth Materials Chemistry and Applications and National Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China

^b State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China

^c Faculty of Science, Applied Chemistry Program, Beijing University of Chemical Technology, Beijing 100029, P.R. China.

Experimental section

Fabrication of graphene oxide (GO): 3 g graphite powder was added to 360 mL concentrated sulfuric acid and 40 mL phosphoric acid in an ice-bath with vigorously stirring for 30 min. Then, 18 g potassium permanganate was slowly added to the above solution and stirred for 1 h. Then, the mixture was maintained at 50 °C for 12 h. The resultant bright yellow suspension was poured into a 1000 mL flash contained 400 g ice, following by adding 3 mL H₂O₂ solution which reduces residual MnO₄⁻ to Mn²⁺. The precipitate was transferred into dialysis and carried out by dialysising in DI water in order to remove the residual Na⁺, K⁺, SO₄²⁻ and other ions. Last, the precipitation was treated by vacuum drying for 48 h.

TG-DSC analysis

The initial weight of sample is 5.3724 mg and the last weight is 5.3817 mg. We assume that the the weight of Nb₄N₅ is *x* mg and the N-G is *y* mg. So x + y = 5.3724 mg. From ca. 150 to ca. 400 °C, the weight increases because the 1 molecular Nb₄N₅ is oxidated to be 2 molecular Nb₂O₅. The weight decreases from ca. 400 to ca.800 °C due to the combustion of N-G and the oxidation of Nb₄N₅. The molecular weight of Nb₄N₅ is 441.6592 g mol⁻¹ and the molecular weight of Nb₂O₅ is 265.8098 g mol⁻¹. The oxidation of Nb₄N₅ can lead that the weight (except N-G) increases to be 1.2037 *x* mg (Nb₂O₅). Around 800 °C, the combustion finish and the oxidation complete. The result indicates that 1.2037 *x* = 5.3817 mg. So *x* = 4.4710 mg and *y* = 0.9014 mg. The content of N-G in Nb₄N₅/N-G is about 16.78 %.

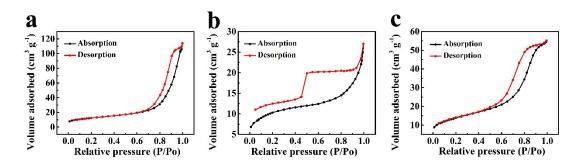
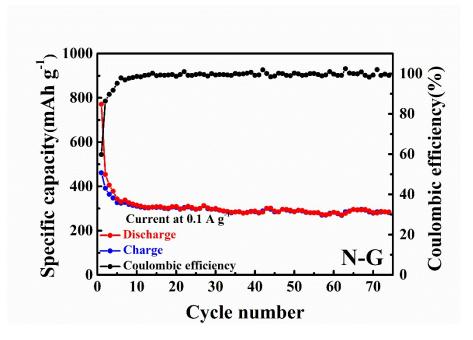



Figure S1. N_2 sorption isotherm of (a) bare Nb_4N_5 , (b) N-G and (c) Nb_4N_5/N -G.

Figure S2. Cycle performance and coulombic efficiency of N-G at 0.1A g⁻¹ (0.0832 mA cm⁻²).