Supplementary Information

Structural and Electronic Properties of HC_nS^- (n = 4-11): Anion Photoelectron Spectroscopy and Density Functional Calculations

Xi-Ling Xu^{1,2}, Bin Yang^{1,2}, Hong-Guang Xu^{1,2}, Xiao-Jiao Deng^{1,2} and Wei-Jun Zheng^{1,2,*}

¹Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; ²University of Chinese Academy of Sciences, Beijing 100049, P.R.China

> * Corresponding author. E-mail: <u>zhengwj@iccas.ac.cn</u> Tel: +86 10 62635054, Fax: +86 10 62563167

Table S1. Harmonic vibrational frequencies (cm⁻¹) and infrared intensities (km/mol) (in parentheses) of the most stable isomers of HC_nS (n = 4-11) at the B3LYP/aug-cc-pVTZ level of theory.

Isomers	Vibrational fraguancies (Infrared intensiv)
HC ₄ S ($^{2}\Pi$)	3458 (123); 2069 (0.1); 1979 (54); 1183 (38); 678 (29); 583 (3); 530 (3); 521 (55); 470 (5); 390 (0); 365 (1); 130 (2); 120 (3).
HC ₅ S (² П)	3458 (167); 2081 (111); 2027 (334); 1678 (226); 1053 (79); 717 (29); 574 (2); 526 (4); 490 (2); 443 (38); 400 (22); 369 (2); 261 (1); 220 (0); 92 (1); 84 (2).
HC ₆ S (² Π)	3459 (166); 2144 (71); 2060 (9); 1941 (209); 1369 (43); 908 (54); 677 (33); 575 (1); 569 (50); 517 (3); 501 (0); 460 (1); 459 (3); 392 (2); 371 (3); 196 (1); 185 (1); 69 (1); 66 (1).
HC ₇ S (² П)	3459 (222); 2158 (337); 2083 (47); 1952 (708); 1725 (399); 1248 (79); 830 (76); 697 (338); 603 (33); 540 (1); 528 (52); 475 (2); 469 (0); 433 (0); 420 (2); 391 (0); 290 (20); 266 (1); 151 (1); 146 (1); 53 (0.5); 53 (0.8).
НС ₈ S (² П)	3460 (215); 2192 (114); 2131 (175); 2005 (125); 1905 (276); 1464 (111); 1115 (40); 742 (59); 693 (0); 674 (35); 651 (1); 597 (50); 557 (0); 519 (0); 486 (2); 451 (0); 394 (0); 377 (2); 375 (0); 237 (2); 225 (2); 122 (1); 118 (0); 43 (0); 42 (1).
HC ₉ S (² Π)	3460 (272); 2186 (141); 2149 (432); 2063 (504); 1877 (901); 1746 (603); 1363 (161); 1031 (65); 749 (1); 689 (71); 684 (35); 669 (0); 603 (0); 575 (49); 527 (1); 520 (0); 462 (1); 452 (0); 400 (1); 350 (1); 311 (1); 294 (0); 194 (1); 190 (2); 100 (0); 100 (0); 35 (0); 35 (0).
HC ₁₀ S (² Π)	3461 (265); 2214 (0); 2169 (330); 2100 (321); 1997 (348); 1837 (289); 1521 (117); 1244 (114); 941 (37); 669 (37); 630 (59); 615 (46); 556 (1); 547 (0); 521 (0); 508 (1); 493 (2); 475 (0); 462 (0); 432 (0); 391 (1); 369 (1); 319 (1); 261 (1); 248 (0); 163 (1); 157 (1); 83 (0); 81 (0); 29 (0); 29 (0).
НС ₁₁ S (² П)	3461 (320); 2212 (28); 2162 (104); 2117 (1469); 2058 (283); 1800 (748); 1756 (13593); 1437 (152); 1168 (158); 881 (55); 675 (37); 602 (46); 598 (1); 591 (65); 587 (1); 534 (0); 531 (0); 497 (1); 488 (0); 468 (1); 446 (0); 430 (0); 395 (0); 316 (1); 305 (1);
	299 (0); 222 (0); 218 (0); 137 (1); 137 (1); 71 (0); 70 (0); 25 (0); 25 (0).

luster	Vibration mode
HC ₄ S	$\begin{array}{c c} H & c & c & c & s \\ \hline 1979 \ cm^{-1} & \end{array}$
HC ₅ S	$H \rightarrow C \rightarrow C \qquad C \qquad C \rightarrow S$ 1678 cm ⁻¹
HC ₆ S	$H \rightarrow C \rightarrow C \qquad C \qquad C \qquad S$ 1941 cm ⁻¹
	$\begin{array}{c c} & H & \bullet & C & \hline & C & \bullet & \bullet & C \\ \hline & & & & & & \\ 2144 \text{ cm}^{-1} & & & \\ \end{array}$
HC ₇ S	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$H \bullet C \bullet C \bullet C \bullet C \bullet C \bullet S$ 1952 cm^{-1}
HC ₈ S	H C C C C C C S 1905 cm ⁻¹
HC ₉ S	$H \leftarrow C \leftarrow C \rightarrow C \leftarrow C \rightarrow C \rightarrow C \rightarrow S$ 1746 cm^{-1}
	H C C C C C C S 1877 cm ⁻¹
HC ₁₀ S	H C C C C C C C C S 1837 cm ⁻¹
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
HC ₁₁ S	$H C C C C C C C S$ 1756 cm^{-1}
	$H C C C C C C C C S$ 1800 cm^{-1}

Table S2. Forms of the calculated vibration modes of HC_nS (n = 4, 6-11), corresponding to the observed vibrational progressions.

Fig. S1 Comparison of photoelectron spectra of HC_nS^- and C_nS^- (n = 4-11) clusters taken with 266 nm photons. The red lines represent the spectra of HC_nS^- clusters and the black lines represent the spectra of C_nS^- clusters. The photoelectron spectra of C_nS^- (n = 8-11) clusters obtained by us have not been reported.

Fig. S2 Geometries, electronic states, and relative energies of the low-lying isomers of HC_nS (n = 4-11) neutrals.

Fig. S3 Comparison of Franck-Condon simulations with the experimental spectra. The black lines represent the photoelectron spectra of HC_nS^- (n = 4-11) clusters. The red lines come from the Franck-Condon simulations.

Fig. S4 Bond lengths of the most stable isomers of the anionic and neutral HC_nS (n = 4-11) clusters. The bond lengths are in angstrom.

Fig. S5 A typical mass spectrum of HC_nS^- (n = 4-11) cluster anions. The major series of the mass peaks is that of $C_nH_m^-$ (n = 6-14; $m \ge 0$) while the minor series is that of $H_mC_nS^-$ ($m \ge 0$; n = 4-11). The assignments of the mass peaks were carefully confirmed by the natural isotopic distributions of the C and S elements. For the $H_mC_nS^-$ ($m \ge 0$; n = 4-11) series, we only assigned the HC_nS^- (n = 4-11) clusters. The ion intensities of HC_nS^- (n = 4-11) are high enough for us to proceed with the photoelectron spectroscopic study although their mass peaks are relatively weak compared with those of $C_nH_m^-$.