Supplementary Information

Ultrasonic-Induced Nanocomposites with

anatase@amorphous TiO2 Core-Shell Structure and their

Photocatalytic Activity

Chenyao Fan, Xinxin Fu, Lin Shi, Siqi Yu, Guodong Qian, Zhiyu Wang*

State Key Laboratory of Silicon Materials, Department of Materials Science and engineering, Zhejiang University, Zheda Road 38, 310027, Hangzhou, China

Figures

Figure S1. Ti 2p XPS spectra of anatase@amorphous TiO_2 core-shell structure composites with various phase proportions.

Figure S2. Changes of Ti-OH/Ti-O ratio in anatase@amorphous TiO_2 core-shell structure composites with various phase proportions.

Figure S3. VB XPS spectra of anatase@amorphous TiO_2 core-shell structure composites with various phase proportions.

Figure S4. Absorption spectra of AF solution at different time after irradiating with simulated solar light and using C2 as the photocatalyst.

Figure S5. Evaluations of solar-driven photocatalytic activity (AF degradation) of anatase@ amorphous TiO_2 core-shell structure composites with various phase proportions.

Figure S6. Evaluations of solar-driven photocatalytic activity (AF degradation) of hydrothermally synthesized anatase NCs at 100°C, 160°C and 200°C respectively.

Figure S7. Kinetic plots of photocatalysis for anatase@amorphous TiO_2 core-shell structure composites with various phase proportions