Design and Synthesis of a Rhodol Isomer and Its Derivatives with High Selectivity and Sensitivity for Sensing Hg²⁺ and F⁻ in Aqueous Media

Jun Qin, Huirong Yao, Song He and Xianshun Zeng

School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China. Fax: (+86)22-60215226; Tel: (+86)22-60216748; E-mail: xshzeng@tjut.edu.cn

Figure S1. Absorption and fluorescence emission spectra of the rhodol fluorophore and the rhodol isomer 1 in water at pH 7. a) Absorption spectra of the rhodol fluorophore and the rhodol isomer 1,

b) Fluorescence emission spectra of the rhodol fluorophore and the rhodol isomer 1.

Figure S2. Absorption a) and fluorescence emission b) spectra of the rhodol isomer 1 under different pH conditions in water.

Figure S3. (a) Photograph of 2 in the presence of various metal ions. (b) fluorescence changes of 2 under UV 365 nm excitation in the presence of different metal ions.

Figure S4. Measurement of the fluorescence turn-on constant ($K_{turn-on}$) of 2.^{S1}

Figure S5 Emission (at 590 nm) of **2** (10 μ M) at different concentrations of Hg²⁺ added. A linear relationship between the fluorescence intensity and the Hg²⁺ concentration could be obtained in the 0 - 80 μ M concentration range (R = 0.9980). The detection limit was then calculated with the equation: detection limit = 3σ bi/m, where σ bi is the standard deviation of blank measurements (σ bi = 5.8197×10^{-8} , derived from 20 measurements), m is the slope between intensity versus sample concentration. The detection limit was measured to be 3.31×10^{-9} M.

^{S1} P. Du and S. J. Lippard, *Inorg. Chem.*, 2010, **49**, 10753.

Figure S6. Absorption a) and Fluorescence b) spectra of **2** (10 μM) and those in the presence of different nitrate salts (10 equiv.). Insets of a) and b): (1) **2** + Ag⁺;(2) **2** + Al³⁺; (3) **2** + Ca²⁺; (4) **2** + Cd²⁺; (5) **2** + Co²⁺; (6) **2** + Cr³⁺; (7) **2** + Cu²⁺; (8) **2** + Fe²⁺; (9) **2** + Fe³⁺; (10) **2** + Hg²⁺; (11) **2** + K⁺; (12) **2** + Mg²⁺; (13) **2** + Na⁺; (14) **2** + NH₄⁺; (15) **2** + Ni²⁺; (16) **2** + Pb²⁺;(17) **2** + Zn²⁺ and (18) **2** alone. $\lambda_{ex} = 500$ nm.

Figure S7. Job's plot of **2** showing the 1:1 stoichiometry of the complex between Hg^{2+} ion and **2**. The total of **2** and Hg^{2+} is 10 *u*M.

Figure S8 Fluorescence response of **2** (10 uM) and **2** + Hg²⁺ (5.0 equiv) as a function of different pH values.

Figure S9 HRMS spectra of **2** upon addition of Hg^{2+} (2.0 equiv.). The peak (m/z) at 388.1545 corresponds to rhodol isomer **1** + H⁺ (Calcd: 388.1543).

Figure S10. Emission at 586 nm of **3** (5 μ M) at different concentrations of F⁻ added. A linear relationship between the fluorescence intensity and the F⁻ concentration could be obtained in the 0 - 500 μ M concentration range (R = 0.9980). The detection limit was then calculated with the equation: detection limit = 3σ bi/m, where σ bi is the standard deviation of blank measurements (σ bi = 1.4225, derived from 10 measurements), m is the slope between intensity versus sample concentration. The detection limit was measured to be 5.61 ×10⁻⁶ M.

Figure S11 Fluorescence response of **3** (5 uM) (black dot) and after addition of F⁻ (40 eq.) (red dot) in DMSO–water (v/v = 1 : 1) as a function of different pH values. $\lambda_{ex} = 514$ nm.

Fig. S12.¹H NMR of **1** (400 MHz, DMSO-d₆)

Fig. S13. ¹³C NMR of 1 (100 MHz, DMSO-d₆).

Fig. S14. HRMS (LC/MS) spectra of 1. The peak at m/z = 388.1544 was assigned to the mass of $1+H^+$.

Fig. S15.¹H NMR of **2** (400 MHz, DMSO-d₆)

Fig. S16 ¹³C NMR of **2** (100 MHz, DMSO-d₆).

Fig. S17. HRMS (LC/MS) spectra of **2**. The peak at m/z = 402.1819 was assigned to the mass of **2**+H⁺.

Fig. S18.¹H NMR of **3** (400 MHz, DMSO-d₆)

Fig. S20. HRMS (LC/MS) spectra of 3. The peak at m/z = 626.28 was assigned to the mass of $3+H^+$.