Supplementary Information for

Investigation on the fluorescence-(stimulus-response) properties of linear and star PVBCz-b-PDMAEMA block copolymers synthesized via ATRP

Tengfei Mao, Yanzi Gou*, Hao Wang, Ke Jian, Jun Wang*

Science and Technology on Advanced Ceramic Fibers and Composites Laboratory,
National University of Defence Technology, Changsha 410073, China

Correspondence to: Yanzi Gou (E-mail: y.gou2012@hotmail.com) \& Jun Wang (Email: wangjun_cfc@nudt.edu.cn)

Synthetic procedures

Synthesis of monomer (VBCz)

VBCz was synthesized according to the reference ${ }^{1}$. A mixture of carbazole $(5.00 \mathrm{~g}$, $30.0 \mathrm{mmol})$, sodium hydroxide ($1.20 \mathrm{~g}, 37.5 \mathrm{mmol}$) and tetra- n-butylammonium bromide (TBAB) ($200 \mathrm{mg}, 0.62 \mathrm{mmol}$) in DMF (100 mL) was stirred for 2 h . Then 1-(chloromethyl)-4-ethenyl-benzen ($5.50 \mathrm{~g}, 36.0 \mathrm{mmol}$) was added dropwise, and the reaction mixture was continually stirred for 20 h at ambient temperature (scheme 1). The resulting mixture was precipitated in deionized water. The resultant white precipitate was filtered and dried under vacuum at $70^{\circ} \mathrm{C}$. The crude product was purified by recrystallization from acetone to give 5.40 g of white crystals with a yield of $63.5 \%{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}\right): 5.18-5.20\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{C}\right), 5.65(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{N}-\mathrm{CH}_{2}\right)$, 5.71-5.76 (d, 1H, CH2$\left.=\mathrm{C}\right), ~ 6.61-6.68\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}\right), ~ 7.13-7.15(\mathrm{~d}, 2 \mathrm{H}$, ArH), 7.21-7.64 (m, 8H, ArH), 8.17-8.19 (d, 2H, ArH). Anal.Calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}: \mathrm{C}$ 89.01, H 6.05, N 4.94; Found: C 88.92, H 5.97, N 4.86.

Scheme S1. Synthesis of the monomer (VBCz).

Synthesis of multi-functional initiators ${ }^{2-4}$

4-arm initiator Pentaerythritol ($3.29 \mathrm{~g}, 24.2 \mathrm{mmol}$) ($2.79,50.0 \mathrm{mmol}$), TEA (15.2 mL , 108.7 mmol) were added into a Schlenk flask along with anhydrous THF (100 mL) by syringe under argon. Cooling the mixture to $-18^{\circ} \mathrm{C}$, and 2-Bromo-iso-butyryl bromide (BiBB) ($13.5 \mathrm{~mL}, 108.7 \mathrm{mmol}$) dissolved in anhydrous THF (40 mL) was added dropwise (Scheme 1b). The reaction solution was subjected to continuous stirring for 24 h at room temperature and then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The resulting organic extracts were washed twice with $200 \mathrm{~mL} \mathrm{HCl}(2 \mathrm{M})$, twice with 200 mL saturated NaHCO_{3}, and twice with 200 mL saturated NaCl in turn. The solution was then dried with anhydrous MgSO_{4}. (Scheme 2). The resultant mixture was filtered, concentrated, recrystallized from hot methanol and filtered to afford 11.5 g (yield: 65%) of 4 -arm initiator as a colorless crystalline solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}\right): 1.88$ (s, $\left.24 \mathrm{H}, 8 \mathrm{CH}_{3}\right), 4.27\left(\mathrm{~s}, 8 \mathrm{H}, 4 \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}\right): 29.7\left(8 \mathrm{CH}_{3}\right)$, $42.9\left(\mathbf{C}\left(\mathrm{CH}_{2} \mathrm{O}\right)_{4}\right), 54.3(4 \mathrm{CBr}), 61.8\left(4 \mathrm{CH}_{2} \mathrm{O}\right), 169.8(4 \mathrm{C}=\mathrm{O}) .($ Scheme S2)

6-arm initiator The procedure was the same as discussed in the previous section except that dipentaerythritol $(2.20 \mathrm{~g}, 7.85 \mathrm{mmol})$ was used instead of ethylene elycol. TEA ($10.0 \mathrm{~mL}, \quad 71.5 \mathrm{mmol}$), anhydrous THF $(100 \mathrm{~mL})$ and 2-bromo-2methylpropanoyl bromide ($8.8 \mathrm{~mL}, 70.9 \mathrm{mmol}$) dissolved in anhydrous THF (20 mL) was added sequentially in this reaction (Scheme 2). This procedure afforded 5.1 g (yiled: 52\%) of 6-arm initiator as a colourless crystalline solid. $1 \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\mathrm{CDCl} 3, \delta, \mathrm{ppm}): 1.94(\mathrm{~s}, 36 \mathrm{H}, 12 \mathrm{CH} 3), 3.60(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH} 2 \mathrm{OCH} 2), 4.29(\mathrm{~s}, 12 \mathrm{H}$,

6CH2O). 13C-NMR(100MHz, CDCl3, $\delta, \mathrm{ppm}): 30.6$ (12CH3), 43.9 (2C(CH2)4), 55.2 (6 CBr), 63.2 (6CH2O), 69.3 (CH2OCH2), 170.6 ($6 \mathrm{C}=\mathrm{O}$). (Scheme S2)

Scheme S2. Synthesis of the multi-functional initiators

Table S1 Reaction conditions of the star PVBCz

Sample	VBCz	Initiator	CuBr	PMDETA	Cyclohexanone	Reaction	
	(mmol)	(mmol)	(mmol)	(mmol)		$(\mathrm{ML}] /[\mathrm{I}]$	Time (h)
1-arm PVBCz	8.00	0.80	0.80	1.60	10	10	1
4-arm PVBCz	8.00	0.27	0.27	0.54	30	10	2
6-arm PVBCz	8.00	0.16	0.16	0.32	50	10	2

(b)

Fig. S1 ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of (a) VBCz and 4-arm PVBCz. (b) the PVBCz linear and star polymers.

Table 2 Polymerization conditions and molecular weight parameters of the 6arm PVBCz- b-PDMAEMA block copolymers.

Sample	feed ratio ${ }^{a}$	Reaction Time (h)	$\begin{gathered} M_{n}^{\mathrm{b}} \\ \left(\times 10^{4} \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right) \end{gathered}$	$\begin{gathered} M_{w}^{\mathrm{b}} \\ \left(\times 10^{4} \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right) \end{gathered}$	PDib ${ }^{\text {b }}$	DPamp ${ }_{\text {c }}$	Ratio $_{\text {arm,GPC }}{ }^{\text {d }}$	Ratio arm,NMR $^{\text {d }}$
L6-1	100	2	4.17	5.80	1.39	$8+30$	1:3.8	1:4.4
L6-2	500	5	8.41	11.86	1.41	$8+75$	$1: 9.4$	1:11.9
L6-3	800	7	13.33	15.86	1.19	8+106	1:13.3	1:12.4

${ }^{a}$ feed ratio is the ratio of VBCz to the initiator. ${ }^{\text {b }}$ Determined by GPC. ${ }^{\mathrm{c}} \mathrm{DP}$, the numberaverage degree of polymerization of $\mathrm{PVBCz} ;{ }^{\mathrm{c}} \mathrm{DP}_{\text {arm }}$, the number-average degree of polymerization of PVBCz on every arm.
${ }^{\text {d }}$ Ratio $_{\text {arm,GPC, }}$, the block ratios of PVBCz to PDMAEMA calculated according to the GPC results; ${ }^{d}$ Ratio ${ }_{\text {arm,NMR }}$, the block ratios calculated according to the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra.

Fig. S2 ${ }^{1} \mathrm{H}$-NMR spectra (a) and GPC traces (b) of the 1 - and 6 -arm PVBCz- $b-$ PDMAEMA

Notes and references

1. J. L. Liu, W. W. He, L. F. Zhang, Z. B. Zhang, J. Zhu, L. Yuan, H. Chen, Z. P. Cheng and X. L. Zhu, Langmuir 2011, 27, 12684-12692.
2. F. Chen, G. Liu, G. Zhang, J. Phys. Chem. B. 2012, 116, 10941-10950.
3. Z. Zhang, T. Hughes, X. Hao and G. G. Qiao, Polymer 2013, 54, 4446-4454.
4. Y. F. Tong, L. Chen, X. H. He and Y. W. Chen, J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4341-4350.
