Supplementary Information for

Phonon Transport in Ground State of Two-dimensional Silicon and Germanium

Yang Han¹, Jinming Dong², Guangzhao Qin¹, and Ming Hu^{1, 3, *}

¹Institute of Mineral Engineering, Division of Materials Science and Engineering, Faculty of Georesources

and Materials Engineering, RWTH Aachen University, 52064 Aachen, Germany

²Group of Computational Condensed Matter Physics, National Laboratory of Solid State Microstructures

and Department of Physics, Nanjing University, Nanjing 210093, People's Republic of China

³Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen

University, 52062 Aachen, Germany

This file includes:

Supplementary discussion (SI: 1-2);

SI-1. Density of K grid $N_K \times N_K$ for solving BTE

SI-2. Cutoff radius for third-order calculations

Supplementary Figures S1-S2

^{*}Author to whom correspondence should be addressed. E-Mail: <u>hum@ghi.rwth-aachen.de</u> (M.H.)

SI-1. Density of K grid N_K × N_K for solving BTE

The convergence of κ with respect to the BZ sampling density of K grid $N_K \times N_K$ for solving BTE is tested. The κ values obtained for the LHD silicene/germanene are shown in **Fig. S1**, from which we can see that κ values of the both structures are stable as long as the density of K grid $N_K \times N_K$ is larger than 19 × 19. The largest tested density of K grid is $N_K \times N_K = 83 \times 83$, where κ values obtained for LHD silicene/germanene are 5.9 and 1.6 W/mK, respectively. All analysis in our work is based on this largest density ($N_K \times N_K = 83 \times 83$).

SI-2. Cutoff radius for third-order calculations

Our method involves discarding all interactions between atomic triplets at distances larger than a cutoff radius N_{cutoff} . Naturally, a satisfactory result demands that this radius exceeds the range of physically relevant anharmonic interactions in the crystal. To select a value of N_{cutoff} we analyzed the convergence of our computed κ at T = 300 K. We started by considering interactions up to $N_{cutoff} = 3^{rd}$ nearest neighbors and we progressively included more coordination shells. The results are shown in **Fig. S2**. We found that $N_{cutoff} = 4^{th}$ for the LHD silicene/germanene yield satisfactorily converged values.

Figure S1. Convergence test of κ for the LHD silicene/germanene at T = 300 K with respect to the density of K grid N_K × N_K employed in solving BTE (all κ are obtained at the selected N_{cutoff} = 4 which is employed in the 3rd IFC calculations).

Figure S2. Convergence test of κ for the LHD silicene/germanene at T = 300 K with respect to the N_{cutoff} employed in the 3rd IFC calculations (all κ are obtained at the density of K grid N_K=83). The selected N_{cutoff} values of the 4th for LHD silicene/germanene are highlighted by black hollow square and red hollow circle, respectively.