Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supplementary information

Targeted solid phase fermentation of the soil dwelling fungus *Gymnascella dankaliensis* yields new brominated tyrosine-derived alkaloids

Hao Wang,^a Haofu Dai,^b Christian Heering,^c Christoph Janiak,^c Wenhan Lin,^d Raha S. Orfali,^e Werner E.G. Müller,^f Zhen Liu^{*a} and

Peter Proksch^{*a}

Contents

Figure S1. HRESIMS of compound 1	4
Figure S2. ¹ H NMR (600MHz, DMSO- <i>d</i> ₆) spectrum of compound 1	5
Figure S3. ¹³ C NMR (150MHz, DMSO- d_6) spectrum of compound 1	6
Figure S4. 1 H- 1 H COSY (600MHz, DMSO- d_{6}) spectrum of compound 1	7
Figure S5. HSQC (600MHz, 150MHz, DMSO-d ₆) spectrum of compound 1	8
Figure S6. HMBC (600MHz, 150MHz, DMSO-d ₆) spectrum of compound 1	9
Figure S7. ROESY (600MHz, DMSO- d_6) spectrum of compound 1	10
Figure S8. ¹ H NMR (600MHz, methanol- d_4) spectrum of compound 1	11

Figure S9. ¹³ C NMR (150MHz, methanol- d_4) spectrum of compound 1	12
Figure S10. ^{1}H - ^{1}H COSY (600MHz, methanol- d_{4}) spectrum of compound 1	13
Figure S11. HSQC ($600MHz$, $150MHz$, methanol- d_4) spectrum of compound 1	14
Figure S12. HMBC (600MHz, 150MHz, methanol- d_4) spectrum of compound 1	15
Figure S13. ROESY (600MHz, methanol- <i>d</i> ₄) spectrum of compound 1	16
Figure S14. HRESIMS of compound 2	17
Figure S15. ¹ H NMR (600MHz, methanol- d_4) spectrum of compound 2	18
Figure S16. ¹³ C NMR (150MHz, methanol- d_4) spectrum of compound 2	19
Figure S17. ^{1}H - ^{1}H COSY (600MHz, methanol- d_4) spectrum of compound 2	20
Figure S18. HSQC (600MHz, 150MHz, methanol- <i>d</i> ₄) spectrum of compound 2	21
Figure S19. HMBC (600MHz, 150MHz, methanol- d_4) spectrum of compound 2	22
Figure S20. ROESY (600MHz, methanol- <i>d</i> ₄) spectrum of compound 2	23
Figure S21. HRESIMS of compound 3	24
Figure S22. ¹ H NMR (600MHz, CDCl ₃) spectrum of compound 3	25
Figure S23. ¹³ C NMR (150MHz, CDCl ₃) spectrum of compound 3	26
Figure S24. ¹ H- ¹ H COSY (600MHz, CDCl ₃) spectrum of compound 3	27
Figure S25. HSQC (600MHz, 150MHz, CDCl ₃) spectrum of compound 3	
Figure S26. HMBC (600MHz, 150MHz, CDCl ₃) spectrum of compound 3	29
Figure S27. ROESY (600MHz, CDCl ₃) spectrum of compound 3	30
Figure S28. HRESIMS of compound 4	31
Figure S29. ¹ H NMR (600MHz, CDCl ₃) spectrum of compound 4	32
Figure S30. ¹³ C NMR (150MHz, CDCl ₃) spectrum of compound 4	33
Figure S31. ¹ H- ¹ H COSY (600MHz, CDCl ₃) spectrum of compound 4	34
Figure S32. HSQC (600MHz, 150MHz, CDCl ₃) spectrum of compound 4	35
Figure S33. HMBC (600MHz, 150MHz, CDCl ₃) spectrum of compound 4	36
Figure S34. ROESY (600MHz, CDCl ₃) spectrum of compound 4	37

Figure S35. HRESIMS of compound 5	38
Figure S36. ¹ H NMR (600MHz, methanol- <i>d</i> ₄) spectrum of compound 5	39
Figure S37. ¹ H- ¹ H COSY (300MHz, methanol- <i>d</i> ₄) spectrum of compound 5	40
Figure S38. HSQC (600MHz, 150MHz, methanol- <i>d</i> ₄) spectrum of compound 5	41
Figure S39. HMBC (600MHz, 150MHz, methanol-d ₄) spectrum of compound 5	42
Figure S40. ROESY (600MHz, methanol-d ₄) spectrum of compound 5	43
Figure S41. HRESIMS of compound 6	44
Figure S42. ¹ H NMR (600MHz, methanol- d_4) spectrum of compound 6	45
Figure S43. ^{1}H - ^{1}H COSY (600MHz, methanol- d_{4}) spectrum of compound 6	46
Figure S44. HSQC ($600MHz$, $150MHz$, methanol- d_4) spectrum of compound 6	47
Figure S45. HMBC (600MHz, 150MHz, methanol-d ₄) spectrum of compound 6	48
Figure S46. ROESY (600MHz, methanol- d_4) spectrum of compound 6	49
Figure S47. HRESIMS of compound 7	50
Figure S48. ¹ H NMR (600MHz, CDCl ₃) spectrum of compound 7	51
Figure S49. ¹ H- ¹ H COSY (600MHz, CDCl ₃) spectrum of compound 7	52
Figure S50. HSQC (600MHz, 150MHz, CDCl ₃) spectrum of compound 7	53
Figure S51. HMBC (600MHz, 150MHz, CDCl ₃) spectrum of compound 7	54
Figure S52. ROESY (600MHz, CDCl ₃) spectrum of compound 7	55
X-ray crystallographic parameters of compound 1 (CCDC 1481781)	56

Analysis Into Analysis Name	D:\Data\Spekt	ren 2015\P	roksch15HR000324	4.d	Acquisition Date 9/21/	2015 1:39:25 PM
Method Sample Name Comment	tune_low.m Hao Br-5-30-2 1 ug/ml	(CH3OH)			Operator Peter Tom Instrument maXis	mes 288882.20213
Acquisition Par Source Type Focus Scan Begin Scan End	rameter ESI Not active 50 m/z 1500 m/z		lon Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 4000 V -500 V 600.0 Vpp	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	0.3 Bar 180 °C 4.0 I/min Source
Intens.					+MS, 4.0-4	4.1min #243-249
		500,1644	502.	1625		
2.0						*
1.5						
1.0						
0.5			501.1679	503.16	58	
					504.1681	

Figure S1. HRESIMS of compound 1.

Figure S8. ¹H NMR (600MHz, methanol- d_4) spectrum of compound 1.

Figure S9. ¹³C NMR (150MHz, methanol- d_4) spectrum of compound 1.

Analysis Info				Acquisition Date 9/21/	/2015 3:19:22 PM
Analysis Name Method Sample Name Comment	D:\Data\Spektren 201 tune_low.m Hao Br-5-36-1-m (CH 1 ug/ml	5\Proksch15HR000327 3OH)	7.d	Operator Peter Tom Instrument maXis	imes 288882.2021
Acquisition Par Source Type Focus Scan Begin Scan End	ESI Not active 50 m/z 1500 m/z	Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 4000 V -500 V 600.0 Vpp	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	0.3 Bar 180 °C 4.0 l/min Source
Intens. x10 ⁴ 1.25 1.00 0.75 0.50 0.25	500,1641	502.1622	503.1655	+MS, 4.3-4	4.5min #257-272
0.00 ¹ 498 498 Meas. m 500.16	499 500 n/z # Ion Formula 41 1 C23H35BrNO6	501 502 m/z err [ppm] 500.1642 0.4	503 mSigma # 27.7	504 505 50 mSigma Score rdb e 1 100.00 6.5 e	6 m/z Conf N-Rule aven ok

Figure S14. HRESIMS of compound 2.

Figure S15. ¹H NMR (600MHz, methanol- d_4) spectrum of compound 2.

Figure S16. ¹³C NMR (150MHz, methanol- d_4) spectrum of compound **2**.

	Mass	Spectrum	SmartF	ormula	Report		
Analysis Info				Acqu	isition Date	9/21/20	15 1:11:49 PM
Analysis Name Method Sample Name Comment	D:\Data\Spektren 201 tune_low.m Hao Br-3-B-4-2-1 (CH 1 ug/ml	5\Proksch15HR00 3OH)	0323.d	Oper Instr	rator Pete ument maX	er Tomme (is	s 288882.20213
Acquisition Pa Source Type Focus Scan Begin Scan End	rameter ESI Not active 50 m/z 1500 m/z	lon Polarity Set Capillary Set End Plate O Set Collision Cel	Positiv 4000 \ Ifset -500 \ I RF 600.0	ie V Vpp	Set Nebulize Set Dry Hea Set Dry Gas Set Divert V	er ater alve	0.3 Bar 180 °C 4.0 l/min Source
Intens. 6000- 4000-	1411 484.1	518 498.1	504.1355	516.1781	+N	ИS, 4.2-4.4m	in #254-265
2000-	476.3072			5	22.1080	.1901	540 m/z
460 Meas. n 464.14 482.15 504.13 514.18	470 480 n/z # Ion Formula 130 1 C23H31BrNO4 134 1 C23H33BrNO5 1 C23H32BrNNa0 1 C24H37BrNO6	490 m/z err 464.1431 482.1537 5 504.1356 514.1799	[ppm] mS 0.1 0.5 0.1 -0.2	igma #mSig 30.6 15.9 26.3 7.9	ma Score 1 100.00 1 100.00 1 100.00 1 100.00	rdb e 8.5 ev 7.5 ev 7.5 ev 6.5 ev	Conf N-Rule ven ok ven ok ven ok ven ok

Figure S21. HRESIMS of compound 3.

Figure S22. ¹H NMR (600MHz, CDCl₃) spectrum of compound **3**.

Figure S23. ¹³C NMR (150MHz, CDCl₃) spectrum of compound 3.

Analysis Info				Acquisitio	n Date 9/21	1/2015 1:59:46 PM
Analysis Name Method Sample Name Comment	D:\Data\Spektren2(tune_low.m Hao Br-3-B-4-4 (CH 1 ug/ml	015\Proksch15HR00032	5.d	Operator Instrumen	Peter Ton t maXis	nmes 288882.20213
Acquisition Pa Source Type Focus Scan Begin Scan End	rameter ESI Not active 50 m/z 1500 m/z	Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 4000 V -500 V 600.0 Vpp	Set Set Set	Nebulizer Dry Heater Dry Gas Divert Valve	0.3 Bar 180 °C 4.0 l/min Source
Intens.					+MS, 4.4	-4.5min #264-272
		578.0939				
6000-						
4000-						
-	576	5,0952 5	80.0919			
2000-		579.0971				
1	574.5549	577.0984	581.0953	2.0979		
0 572	574 5	76 578	580	582	584	586 m/z
Meas. r 576.09	n/z # Ion Formula 952 1 C24H36Br2N0	m/z err [ppm] 05 576.0955 0.4	mSigma # 49.8	¢mSigma \$ 1 1	Score rdb 00.00 6.5	e ⁻ Conf N-Rule even ok

Figure S28. HRESIMS of compound 4.

Figure S29. ¹H NMR (600MHz, CDCl₃) spectrum of compound **4**.

Figure S30. ¹³C NMR (150MHz, CDCl₃) spectrum of compound 4.

Analysis Info				Acquisition Date 10/2	23/2015 11:00:06 AM
Analysis Name	D:\Data\Spektren2	015\Proksch15HR000	385.d		
Method	tune low.m			Operator Peter Ton	nmes
Sample Name	Hao Br-5-50-2-4 (0	CH3OH)		Instrument maXis	288882.20213
Comment	3 ul in 1000 ul				
Acquisition Par	rameter				
Source Type Focus Scan Begin Scan End	ESI Not active 50 m/z 1500 m/z	Ion Polarity Set Capillary Set End Plate Offs Set Collision Cell F	Positive 4000 V et -500 V RF 600.0 Vpp	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	0.3 Bar 180 °C 4.0 I/min Source
Intens.				+MS, 4.3-	4.7min #260-282
300-	468.1	569			
1	4				
-			49	98,1845	
200-					
-				504.3227	
1					
100-					· · · ·
Judante		II			المعديد مريد الم
450	460	470 480	490	500 510	m/z
Meas. m	/z # Ion Formula	m/z err [ppm] mSigma #mS	Sigma Score rdb e	Conf N-Rule

0.7

184.9

168.2

498.1845 1 C24H37BrNO5 498.1850 1.0

C23H33BrNO4

466.1587

Figure S35. HRESIMS of compound 5.

1

466.1584

100.00

1 100.00

7.5

6.5

even

even

1

ok

ok

Analysis Info				Acquisition Date 10/22	2/2015 2:43:55 PM
Analysis Name	D:\Data\Spektren 2015\/	Proksch15HR000383	.d		
Method	tune_low.m			Operator Peter Tom	mes
Sample Name	Hao Br-5-50-2-1 (CH3O)H)		Instrument maXis	288882.20213
Comment	10 ul in 1000 ul				
Acquisition Par	rameter				
Source Type	ESI Not active	Ion Polarity Set Capillary	Positive	Set Nebulizer Set Dry Heater	0.3 Bar 180 °C
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	4.0 l/min
Scan End	1500 m/z	Set Collision Cell RF	600.0 Vpp	Set Divert Valve	Source
Intens 1				+MS 4 3-4	7min #261-283
interio.		406 167			
600-		480.1071	•		
-					
	466 1584			508.14	491
400-					
-					
		9			
200-					
-					1
			L. S. N. H. H. H.	Was hard as here of multiple	And the design of the second
460	470	480	490	500	510 m/z
Meas. m	/z # Ion Formula	m/z err [ppm]	mSigma	#mSigma Score rdb	e Conf N-Rule
466.15	84 1 C23H33BrNO4	466.1587 0.7	33.0	1 100.00 7.5	even ok
484.16	89 1 C23H35BrNO5	484.1693 0.9	30.0	1 100.00 6.5	even ok
506.15	10 1 C23H34DINNaO5	0.4	50.0	1 100.00 0.0	UTUT UK

Figure S41. HRESIMS of compound 6.

Analysis Info				Acquisition Date 9/2	2/2015 3:53:48 PM
Analysis Name Method Sample Name Comment	D:\Data\Spektren 201 tune_low.m Hao Br-2-72-2 (CH30 0,8 ug/ml,	I5\Proksch15HR000331 DH)	.d	Operator Peter To Instrument maXis	ommes 288882.20213
Acquisition Par Source Type Focus Scan Begin Scan End	rameter ESI Not active 50 m/z 1500 m/z	Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 4000 V -500 V 600.0 Vpp	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	0.3 Bar 180 °C 4.0 I/min Source
Intens		566.0935		+MS, 3.	1-3.3min #186-198
1000	564,0959	0991	568.091	569.0948	
0 563 Meas. m 564.09	3 564 56 n/z # Ion Formula 159 1 C23H36Br2NO5	5 566 567 m/z err [ppm] 5 564.0955 -0.8	568 mSigma # 21.4	569 570 mSigma Score rdb 1 100.00 5.5	571 m/z e ⁻ Conf N-Rule even ok

Figure S47. HRESIMS of compound 7.

Figure S48. ¹H NMR (600MHz, CDCl₃) spectrum of compound 7.

X-ray crystallographic parameters of compound 1 (CCDC 1481781)

Crystallization conditions: X-ray quality crystal of 1 was obtained by slow evaporation from MeOH solution. A suitable single crystal was carefully selected under a polarizing microscope. Data collection: Bruker Kappa APEX2 CCD diffractometer (with microfocus tube), Mo-K α radiation ($\lambda = 0.71073$ Å), multilayer mirror, ω - and ϕ -scan; data collection with APEX2, cell refinement and data reduction with SAINT,¹ experimental absorption correction with SADABS.² Structure Analysis and Refinement: The structure was solved by direct methods using SHELXS-97; refinement was done by full-matrix least squares on F^2 using the SHELXL-97 program suite.³ All non-hydrogen positions were refined with anisotropic displacement parameters. Hydrogen atoms were positioned geometrically (with C-H = 0.95 Å for aromatic/olefinic CH, 1.00 Å for tertiary CH, 0.99 Å for CH₂ and 0.98 Å for CH₃) and refined using riding models (AFIX 43, 13, 23 and 133 or 137, respectively), with $U_{iso}(H) = -1.2U_{eq}(CH, CH_2)$ and $-1.5U_{eq}(CH_3)$. The hydrogen atoms on the hydroxyl groups with O1 and O7 (methanol solvent molecule) were found and refined with $U_{iso}(H) =$ 1.5 $U_{eq}(O)$. The N-H hydrogen atom has been found and refined with $U_{iso}(H) = 1.5U_{eq}(N)$. The H atoms on O2 and O5 had to be calculated and refined with AFIX 83 to avoid their wrong intramolecular positioning (O2-H towards O5 and O5-H towards O3) which would lead to C-O-H angles $< 92^{\circ}$. The apparent disorder due higher thermal motion and less constrained crystal packing of the bent alkyl chain and the methyl group of the methanol solvent molecules leads to short intermolecular H···H contacts and short C-C bonds as artefacts which are noted as Alert level A and B in the Checkcif file.

The gymnastatin T molecule (1) crystallizes in the non-centrosymmetric orthorhombic

space group *P* $2_12_12_1$. A methanol solvent molecule of crystallization is embedded in the crystal lattice per formula unit (**Figure S53**). The O-H and N-H group are part of a hydrogen-bonding network (**Figure S54**, **Table S5**). The larger thermal ellipsoids of the carbon atoms of the bent alkyl chain indicate their higher thermal motion and less constrained crystal packing compared to the more rigid hydrogen-bonded part, the OH-functionalized bicyclo[3.3.1]nonane ring of the molecule. The unit cell packing can be seen as a separation of the hydrophilic hydrogen-bonding part, the OH-substituted bicyclo[3.3.1]nonane ring of the molecule (in layers parallel to the *ab* plane) and the hydrophobic branched alkyl chain (sandwiched between the hydrophilic layers) (**Figure S55**).⁴ The bent alkyl chains from adjacent molecules interdigitate (interlock) along the *c* direction.⁵

Figure S53. Molecular structure of **1** from single-crystal X-ray diffractometry (50% thermal ellipsoids, 20% for C25, H atoms of arbitrary radii).

Compound	1
Data set	Br_5_30_2
CCDC number	1481781
Empirical formula	C ₂₃ H ₃₄ BrNO ₆ ·CH ₃ OH
M/g mol ⁻¹	532.46
Crystal size/mm ³	$0.40 \times 0.05 \times 0.01$
Temperature/K	150
θ range/° (completeness)	2.5–25.3° (0.99)
h; k; l range	-8/9, 14/14, -41/42
Crystal system	Orthorhombic
Space group	<i>P</i> 2 ₁ 2 ₁ 2 ₁
a/Å	7.0251(3)
b/Å	11.3852(5)
c/Å	32.3080(15)
α/°	90
β/°	90
$\gamma^{/\circ}$	90
V/Å ³	2584.1(2)
Ζ	4
$D_{calc}/g \text{ cm}^{-3}$	1.369
μ (Mo K α)/mm ⁻¹	1.63
F(000)	1120
Max./min. transmission	0.674, 0.746
Reflections collected	39194
Independent reflect. (R _{int})	6086 (0.0445)
Data/restraints/parameters	6088/5/275
Max./min. $\Delta \rho/e \text{ Å}^{-3 a}$	1.469/-0.977
$R_1/wR_2 [I>2\sigma(I)]^b$	0.0626/0.1579
R_1/wR_2 (all data) ^b	0.0747/0.1637
Goodness-of-fit on F ^{2 c}	1.092
Flack parameter ^d	0.043(4)

Table S1. Crystal data and structure refinement for 1

^a Largest difference peak and hole; ^b $R_1 = [\sum(||F_o| - |F_c||)/\sum|F_o|]; wR_2 = [\sum[w(F_o^2 - F_c^2)^2]/\sum[w(F_o^2)^2]]^{1/2}; ^c Goodness-of-fit = [\sum[w(F_o^2 - F_c^2)^2]/(n - p)]^{1/2}; ^d Absolute structure parameter.⁶$

	x	у	z	$U_{\rm iso}$ */ $U_{\rm eq}$
Br	0.94426 (9)	1.08655 (6)	0.19418 (2)	0.0331 (2)
C1	0.8297 (8)	0.9768 (5)	0.2698 (2)	0.0202 (12)
H1A	0.8167	0.9026	0.2535	0.024*
01	1.0197 (6)	0.9889 (4)	0.28372 (16)	0.0254 (10)
H1	1.064 (12)	0.922 (5)	0.279 (2)	0.038*
C2	0.6985 (8)	0.9727 (5)	0.3068 (2)	0.0254 (13)
H2A	0.5659	0.9626	0.2961	0.030*
C3	0.7037 (10)	1.0866 (6)	0.3311 (2)	0.0302 (13)
H3A	0.8320	1.0969	0.3432	0.036*
H3B	0.6109	1.0822	0.3541	0.036*
C4	0.6570 (9)	1.1935 (5)	0.3039 (2)	0.0275 (13)
O2	0.6805 (9)	1.2931 (4)	0.32925 (18)	0.0448 (15)
H2	0.6520	1.3538	0.3158	0.067*
C5	0.4558 (11)	1.1811 (6)	0.2891 (2)	0.0343 (16)
H5A	0.3559	1.1797	0.3111	0.041*
O3	0.4054 (7)	1.2410 (4)	0.25144 (16)	0.0322 (11)
05	0.7751 (6)	1.3017 (4)	0.24330 (16)	0.0283 (10)
Н5	0.7530	1.2839	0.2185	0.042*
C6	0.4112 (9)	1.1138 (6)	0.2507 (2)	0.0306 (15)
H6A	0.2859	1.0722	0.2499	0.037*
C7	0.5720 (9)	1.0579 (5)	0.2273 (2)	0.0249 (13)
O4	0.5394 (8)	0.9852 (4)	0.20181 (16)	0.0357 (11)
C8	0.7758 (7)	1.0839 (6)	0.24217 (19)	0.0213 (11)
С9	0.7976 (9)	1.1982 (5)	0.2668 (2)	0.0252 (14)
Н9	0.9294	1.1992	0.2785	0.030*
N10	0.7407 (8)	0.8721 (5)	0.33274 (19)	0.0263 (12)
H10	0.864 (9)	0.879 (7)	0.343 (2)	0.039*
C11	0.6062 (8)	0.7934 (6)	0.3423 (2)	0.0258 (14)

Table S2. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$ for 1.

O6	0.4378 (7)	0.8024 (4)	0.32919 (16)	0.0358 (11)
C12	0.6652 (10)	0.6938 (6)	0.3689 (2)	0.0275 (14)
H12	0.7938	0.6869	0.3776	0.033*
C13	0.5372 (11)	0.6140 (6)	0.3806 (2)	0.0331 (15)
H13	0.4106	0.6271	0.3714	0.040*
C15	0.4129 (13)	0.4462 (7)	0.4146 (3)	0.047 (2)
H15	0.2948	0.4750	0.4045	0.056*
C16	0.407 (3)	0.3322 (11)	0.4394 (4)	0.094 (2)
H16	0.5385	0.3039	0.4457	0.113*
C17	0.296 (3)	0.3515 (12)	0.4784 (4)	0.094 (2)
H17A	0.2717	0.2749	0.4919	0.113*
H17B	0.1712	0.3870	0.4715	0.113*
C14	0.5664 (13)	0.5091 (6)	0.4058 (2)	0.0389 (16)
C18	0.400 (3)	0.4306 (11)	0.5081 (4)	0.094 (2)
H18A	0.5280	0.3969	0.5131	0.113*
H18B	0.4183	0.5078	0.4946	0.113*
C19	0.307 (3)	0.4500 (12)	0.5485 (4)	0.094 (2)
H19A	0.2852	0.3732	0.5620	0.113*
H19B	0.3936	0.4962	0.5664	0.113*
C20	0.130 (2)	0.5107 (12)	0.5447 (4)	0.094 (2)
H20A	0.0428	0.4550	0.5306	0.113*
H20B	0.0811	0.5194	0.5732	0.113*
C21	0.102 (3)	0.6087 (14)	0.5274 (6)	0.116 (3)
H21A	0.1329	0.5957	0.4979	0.139*
H21B	0.2038	0.6605	0.5383	0.139*
C22	-0.091 (3)	0.6901 (14)	0.5273 (5)	0.116 (3)
H22A	-0.0559	0.7726	0.5233	0.173*
H22B	-0.1576	0.6812	0.5538	0.173*
H22C	-0.1748	0.6649	0.5047	0.173*
C23	0.771 (3)	0.4818 (15)	0.4187 (6)	0.116 (3)
H23A	0.8468	0.4636	0.3942	0.173*
H23B	0.7712	0.4142	0.4375	0.173*

H23C	0.8251	0.5501	0.4329	0.173*
C24	0.297 (3)	0.2407 (15)	0.4134 (5)	0.116 (3)
H24A	0.1806	0.2764	0.4025	0.173*
H24B	0.2640	0.1734	0.4309	0.173*
H24C	0.3772	0.2142	0.3904	0.173*
C25	0.173 (4)	0.944 (4)	0.3908 (14)	0.34 (3)
H25A	0.0883	0.9704	0.4131	0.503*
H25B	0.1786	1.0047	0.3692	0.503*
H25C	0.3012	0.9314	0.4020	0.503*
07	0.1023 (9)	0.8365 (8)	0.3735 (2)	0.066 (2)
H7	0.148 (19)	0.826 (13)	0.347 (2)	0.099*

Table S3. Atomic displacement parameters (\AA^2) for 1.

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br	0.0232 (3)	0.0367 (3)	0.0396 (3)	0.0050 (3)	0.0103 (3)	0.0075 (3)
C1	0.016 (3)	0.009 (3)	0.036 (4)	-0.003 (2)	-0.001 (2)	0.007 (2)
01	0.0088 (19)	0.019 (2)	0.048 (3)	0.0035 (15)	0.0011 (17)	0.002 (2)
C2	0.012 (2)	0.021 (3)	0.043 (4)	0.004 (2)	-0.001 (3)	0.010 (3)
C3	0.031 (3)	0.026 (3)	0.033 (3)	0.007 (3)	0.004 (3)	0.005 (3)
C4	0.029 (3)	0.019 (3)	0.035 (4)	0.009 (2)	0.001 (3)	-0.004 (3)
02	0.065 (4)	0.023 (2)	0.047 (3)	0.027 (3)	-0.012 (3)	-0.011 (2)
C5	0.025 (3)	0.032 (4)	0.046 (4)	0.012 (3)	0.011 (3)	0.008 (3)
03	0.025 (3)	0.022 (2)	0.049 (3)	0.0080 (19)	-0.003 (2)	0.007 (2)
05	0.025 (2)	0.015 (2)	0.044 (3)	-0.0085 (18)	-0.008 (2)	0.004 (2)
C6	0.014 (3)	0.026 (3)	0.052 (4)	0.001 (2)	0.001 (3)	0.013 (3)
C7	0.019 (3)	0.018 (3)	0.038 (3)	-0.005 (2)	-0.001 (3)	0.010 (2)
O4	0.035 (3)	0.024 (2)	0.048 (3)	-0.009 (2)	-0.011 (2)	0.004 (2)
C8	0.014 (2)	0.016 (3)	0.034 (3)	-0.003 (2)	0.000 (2)	0.005 (3)
С9	0.018 (3)	0.016 (3)	0.041 (4)	-0.003 (2)	-0.006 (3)	0.009 (3)
N10	0.018 (2)	0.023 (3)	0.038 (3)	0.004 (2)	-0.004 (2)	0.011 (2)
C11	0.016 (3)	0.024 (3)	0.038 (4)	-0.002 (2)	0.001 (2)	0.003 (3)

O6	0.016 (2)	0.040 (3)	0.051 (3)	-0.002 (2)	-0.002 (2)	0.019 (2)
C12	0.025 (3)	0.026 (3)	0.032 (4)	0.006 (3)	0.001 (3)	0.006 (3)
C13	0.033 (3)	0.030 (4)	0.037 (4)	0.004 (3)	0.001 (3)	0.009 (3)
C15	0.051 (5)	0.034 (4)	0.054 (5)	-0.009 (4)	0.010 (4)	0.016 (3)
C16	0.134 (6)	0.069 (4)	0.078 (4)	-0.011 (4)	0.014 (4)	0.023 (3)
C17	0.134 (6)	0.069 (4)	0.078 (4)	-0.011 (4)	0.014 (4)	0.023 (3)
C14	0.046 (4)	0.027 (3)	0.044 (4)	-0.001 (4)	0.007 (4)	0.012 (3)
C18	0.134 (6)	0.069 (4)	0.078 (4)	-0.011 (4)	0.014 (4)	0.023 (3)
C19	0.134 (6)	0.069 (4)	0.078 (4)	-0.011 (4)	0.014 (4)	0.023 (3)
C20	0.134 (6)	0.069 (4)	0.078 (4)	-0.011 (4)	0.014 (4)	0.023 (3)
C21	0.139 (8)	0.090 (6)	0.118 (6)	0.003 (5)	0.024 (6)	0.016 (5)
C22	0.139 (8)	0.090 (6)	0.118 (6)	0.003 (5)	0.024 (6)	0.016 (5)
C23	0.139 (8)	0.090 (6)	0.118 (6)	0.003 (5)	0.024 (6)	0.016 (5)
C24	0.139 (8)	0.090 (6)	0.118 (6)	0.003 (5)	0.024 (6)	0.016 (5)
C25	0.13 (2)	0.41 (6)	0.47 (7)	-0.01 (3)	-0.03 (3)	-0.28 (6)
07	0.036 (3)	0.096 (6)	0.066 (4)	0.012 (3)	0.000 (3)	-0.013 (4)

Table S4. Geometric parameters (Å, °) for 1.

Br—C8	1.951 (6)	C15—C14	1.326 (12)
C1—O1	1.415 (7)	C15—C16	1.525 (14)
C1—C2	1.509 (10)	С15—Н15	0.9500
C1—C8	1.559 (8)	C16—C17	1.500 (19)
C1—H1A	1.0000	C16—C24	1.54 (2)
O1—H1	0.84 (5)	С16—Н16	1.0000
C2—N10	1.450 (8)	C17—C18	1.51 (2)
C2—C3	1.516 (10)	C17—H17A	0.9900
C2—H2A	1.0000	С17—Н17В	0.9900
C3—C4	1.536 (9)	C14—C23	1.53 (2)
С3—НЗА	0.9900	C18—C19	1.476 (19)
С3—Н3В	0.9900	C18—H18A	0.9900
C4—O2	1.410 (8)	C18—H18B	0.9900

C4—C5	1.499 (10)	C19—C20	1.43 (2)
С4—С9	1.553 (10)	C19—H19A	0.9900
O2—H2	0.8400	C19—H19B	0.9900
С5—О3	1.438 (8)	C20—C21	1.262 (18)
С5—С6	1.491 (11)	C20—H20A	0.9900
С5—Н5А	1.0000	C20—H20B	0.9900
O3—C6	1.449 (8)	C21—C22	1.64 (2)
О5—С9	1.410 (8)	C21—H21A	0.9900
О5—Н5	0.8400	C21—H21B	0.9900
С6—С7	1.500 (9)	C22—H22A	0.9800
С6—Н6А	1.0000	C22—H22B	0.9800
С7—О4	1.190 (8)	С22—Н22С	0.9800
С7—С8	1.539 (8)	С23—Н23А	0.9800
С8—С9	1.534 (9)	С23—Н23В	0.9800
С9—Н9	1.0000	С23—Н23С	0.9800
N10—C11	1.338 (8)	C24—H24A	0.9800
N10—H10	0.93 (6)	C24—H24B	0.9800
C11—O6	1.261 (8)	C24—H24C	0.9800
C11—C12	1.482 (9)	C25—O7	1.44 (3)
C12—C13	1.333 (10)	С25—Н25А	0.9800
С12—Н12	0.9500	С25—Н25В	0.9800
C13—C14	1.459 (9)	С25—Н25С	0.9800
С13—Н13	0.9500	07—Н7	0.91 (6)
O1—C1—C2	109.2 (5)	C14—C15—C16	126.5 (10)
O1—C1—C8	109.5 (5)	С14—С15—Н15	116.7
C2—C1—C8	109.2 (5)	С16—С15—Н15	116.7
O1—C1—H1A	109.6	C17—C16—C15	109.3 (11)
C2—C1—H1A	109.6	C17—C16—C24	107.2 (14)
C8—C1—H1A	109.6	C15—C16—C24	107.6 (11)
С1—01—Н1	102 (6)	С17—С16—Н16	110.9
N10-C2-C1	110.9 (5)	С15—С16—Н16	110.9

N10—C2—C3	111.9 (6)	С24—С16—Н16	110.9
C1—C2—C3	111.6 (5)	C16—C17—C18	111.7 (13)
N10—C2—H2A	107.4	С16—С17—Н17А	109.3
C1—C2—H2A	107.4	С18—С17—Н17А	109.3
С3—С2—Н2А	107.4	С16—С17—Н17В	109.3
C2—C3—C4	112.1 (5)	С18—С17—Н17В	109.3
С2—С3—НЗА	109.2	H17A—C17—H17B	107.9
С4—С3—НЗА	109.2	C15—C14—C13	116.6 (8)
С2—С3—Н3В	109.2	C15—C14—C23	126.5 (9)
С4—С3—Н3В	109.2	C13—C14—C23	116.8 (9)
НЗА—СЗ—НЗВ	107.9	C19—C18—C17	115.9 (14)
O2—C4—C5	111.8 (5)	C19—C18—H18A	108.3
O2—C4—C3	106.2 (6)	C17—C18—H18A	108.3
C5—C4—C3	108.1 (6)	C19—C18—H18B	108.3
O2—C4—C9	110.2 (6)	C17—C18—H18B	108.3
C5—C4—C9	111.0 (6)	H18A—C18—H18B	107.4
C3—C4—C9	109.4 (5)	C20—C19—C18	112.4 (13)
С4—О2—Н2	109.5	С20—С19—Н19А	109.1
O3—C5—C6	59.3 (4)	С18—С19—Н19А	109.1
O3—C5—C4	117.2 (6)	С20—С19—Н19В	109.1
C6—C5—C4	120.7 (6)	С18—С19—Н19В	109.1
O3—C5—H5A	115.9	H19A—C19—H19B	107.9
С6—С5—Н5А	115.9	C21—C20—C19	126.8 (16)
С4—С5—Н5А	115.9	С21—С20—Н20А	105.6
С5—О3—С6	62.2 (5)	С19—С20—Н20А	105.6
С9—О5—Н5	109.5	С21—С20—Н20В	105.6
O3—C6—C5	58.6 (4)	С19—С20—Н20В	105.6
O3—C6—C7	117.0 (5)	H20A—C20—H20B	106.1
C5—C6—C7	118.6 (6)	C20—C21—C22	128.8 (16)
О3—С6—Н6А	116.7	C20—C21—H21A	105.1
С5—С6—Н6А	116.7	С22—С21—Н21А	105.1
С7—С6—Н6А	116.7	C20—C21—H21B	105.1

O4—C7—C6	119.9 (6)	C22—C21—H21B	105.1
O4—C7—C8	121.9 (6)	H21A—C21—H21B	105.9
С6—С7—С8	117.5 (6)	C21—C22—H22A	109.5
C9—C8—C7	114.7 (5)	С21—С22—Н22В	109.5
C9—C8—C1	110.0 (5)	H22A—C22—H22B	109.5
C7—C8—C1	104.8 (5)	С21—С22—Н22С	109.5
C9—C8—Br	109.8 (4)	H22A—C22—H22C	109.5
C7—C8—Br	108.6 (4)	H22B—C22—H22C	109.5
C1—C8—Br	108.7 (4)	C14—C23—H23A	109.5
O5—C9—C8	114.7 (6)	С14—С23—Н23В	109.5
O5—C9—C4	111.9 (5)	H23A—C23—H23B	109.5
C8—C9—C4	107.9 (5)	С14—С23—Н23С	109.5
О5—С9—Н9	107.4	H23A—C23—H23C	109.5
С8—С9—Н9	107.4	H23B—C23—H23C	109.5
С4—С9—Н9	107.4	C16—C24—H24A	109.5
C11—N10—C2	121.2 (5)	C16—C24—H24B	109.5
C11—N10—H10	130 (5)	H24A—C24—H24B	109.5
C2—N10—H10	109 (5)	C16—C24—H24C	109.5
O6—C11—N10	122.1 (6)	H24A—C24—H24C	109.5
O6—C11—C12	121.3 (6)	H24B—C24—H24C	109.5
N10—C11—C12	116.7 (5)	O7—C25—H25A	109.5
C13—C12—C11	119.8 (6)	O7—C25—H25B	109.5
C13—C12—H12	120.1	H25A—C25—H25B	109.5
C11—C12—H12	120.1	O7—C25—H25C	109.5
C12—C13—C14	128.4 (7)	H25A—C25—H25C	109.5
С12—С13—Н13	115.8	H25B—C25—H25C	109.5
C14—C13—H13	115.8	С25—О7—Н7	110 (10)
O1—C1—C2—N10	-61.9 (7)	O1—C1—C8—Br	61.3 (6)
C8—C1—C2—N10	178.3 (5)	C2—C1—C8—Br	-179.2 (4)
O1—C1—C2—C3	63.6 (6)	C7—C8—C9—O5	-69.6 (7)
C8—C1—C2—C3	-56.2 (7)	C1—C8—C9—O5	172.6 (5)

N10—C2—C3—C4	-179.4 (5)	Br—C8—C9—O5	53.0 (6)
C1—C2—C3—C4	55.7 (7)	C7—C8—C9—C4	55.8 (7)
C2—C3—C4—O2	-175.8 (6)	C1—C8—C9—C4	-62.0 (6)
C2—C3—C4—C5	64.1 (7)	Br—C8—C9—C4	178.4 (4)
C2—C3—C4—C9	-56.8 (7)	O2—C4—C9—O5	-57.0 (7)
O2—C4—C5—O3	87.9 (7)	C5—C4—C9—O5	67.4 (7)
C3—C4—C5—O3	-155.6 (6)	C3—C4—C9—O5	-173.5 (5)
C9—C4—C5—O3	-35.6 (8)	O2—C4—C9—C8	176.0 (5)
O2—C4—C5—C6	156.6 (6)	C5—C4—C9—C8	-59.6 (7)
C3—C4—C5—C6	-86.9 (8)	C3—C4—C9—C8	59.5 (7)
C9—C4—C5—C6	33.1 (8)	C1—C2—N10—C11	-124.2 (7)
C4—C5—O3—C6	111.3 (7)	C3—C2—N10—C11	110.5 (7)
C5—O3—C6—C7	-108.6 (7)	C2—N10—C11—O6	0.4 (11)
C4—C5—C6—O3	-105.4 (7)	C2—N10—C11—C12	179.9 (6)
O3—C5—C6—C7	105.8 (6)	O6—C11—C12—C13	-2.4 (11)
C4—C5—C6—C7	0.4 (9)	N10-C11-C12-C13	178.1 (7)
O3—C6—C7—O4	-128.0 (6)	C11—C12—C13—C14	178.6 (7)
C5—C6—C7—O4	164.9 (6)	C14—C15—C16—C17	115.7 (14)
O3—C6—C7—C8	61.2 (8)	C14—C15—C16—C24	-128.2 (13)
C5—C6—C7—C8	-5.9 (8)	C15—C16—C17—C18	-69.2 (16)
O4—C7—C8—C9	166.0 (6)	C24—C16—C17—C18	174.4 (12)
C6—C7—C8—C9	-23.4 (7)	C16—C15—C14—C13	178.5 (9)
O4—C7—C8—C1	-73.3 (7)	C16—C15—C14—C23	-0.6 (17)
C6—C7—C8—C1	97.3 (6)	C12—C13—C14—C15	177.1 (8)
O4—C7—C8—Br	42.7 (7)	C12—C13—C14—C23	-3.7 (14)
C6—C7—C8—Br	-146.7 (4)	C16—C17—C18—C19	-176.8 (13)
O1—C1—C8—C9	-59.0 (6)	C17—C18—C19—C20	-64.6 (17)
C2—C1—C8—C9	60.5 (6)	C18—C19—C20—C21	-56 (2)
O1—C1—C8—C7	177.2 (5)	C19—C20—C21—C22	-171.3 (17)
C2—C1—C8—C7	-63.2 (6)		

Figure S54. Hydrogen-bonding network in **1** indicated as dashed orange lines. See Table X for details. Symmetry codes: (i) -x+2, y-1/2, -z+1/2; (iii) x+1, y, z; (iv) -x+1, y+1/2, -z+1/2.

D—H…A	D—H (Å)	H····A (Å)	D…A (Å)	D—H…A (°)
01—H1…O5 ⁱ	0.84(5)	1.91(6)	2.717(6)	160(8)
C1—H1A…O3 ⁱⁱ	1.00	2.42	3.225(7)	137
N10—H10…O7 ⁱⁱⁱ	0.93(6)	2.00(6)	2.889(9)	158(7)
02—H2…O4 ^{iv}	0.84	2.09	2.859(7)	152
O5—H5…O6 ^{iv}	0.84	2.05	2.779(7)	144
C6—H6A····Br ^v	1.00	3.00	3.767(7)	134
C6—H6A…O1 ^v	1.00	2.36	3.276(7)	151
O7—H7…O6	0.91(6)	2.14(12)	2.784(8)	128(12)

Table S5. Hydrogen-bond geometry (Å, °) for 1.^a

^a Standard deviations for refined atom contacts are given in parentheses. Symmetry codes: (i) -x+2, y-1/2, -z+1/2; (ii) -x+1, y-1/2, -z+1/2; (iii) x+1, y, z; (iv) -x+1, y+1/2, -z+1/2; (v) x-1, y, z.

Figure S55. Unit cell packing diagram of **1** projected onto the bc plane – in ball-and-stick and in space-filling mode – showing the separation of the hydrophilic hydrogen-bonding part of the molecule (in layers parallel to the ab plane) and the interdigitated (interlocking) hydrophobic branched alkyl chain (sandwiched between the hydrophilic layers).

Notes and references

- Apex2, Data Collection Program for the CCD Area-Detector System; SAINT, Data Reduction and Frame Integration Program for the CCD Area-Detector System. Bruker Analytical X-ray Systems, Madison, Wisconsin, USA, 1997-2006.
- G. M. Sheldrick, Program SADABS: Area-detector absorption correction, University of Göttingen, Germany, 1996.
- 3. G. M. Sheldrick, Acta Crystallogr. Sect. A, 2008, 64, 112-122.
- (a) J. K. Maclaren, J. Sanchiz, P. Gili and C. Janiak, *New J. Chem.*, 2012, 36, 1596-1609;
 (b) J. K. Maclaren and C. Janiak, *Inorg. Chim. Acta*, 2012, 389, 183-190;
 (c) T. Dorn, A. C. Chamayou and C. Janiak, *New. J. Chem.*, 2006, 30, 156-167.
- 5. M. Enamullah, V. Vasylyeva and C. Janiak, Inorg. Chim. Acta, 2013, 408, 109-119.
- (a) H. D. Flack, M. Sadki, A. L. Thompson and D. J. Watkin, Acta Crystallogr. Sect. A: Fundam. Crystallogr., 2011, 67, 21–34; (b) H. D. Flack and G. Bernardinelli, Chirality, 2008, 20, 681–690; (c) H. D. Flack and G. Bernardinelli, Acta Crystallogr. Sect. A: Fundam. Crystallogr., 1999, 55, 908–915; (d) H. D. Flack, Acta Crystallogr. Sect. A: Fundam. Crystallogr., 1983, 39, 876–881.