Supporting information

Chemically modified graphene oxide wrapped porous hematite nanoarchitecture as high rate lithium-ion battery anode material

Chandrasekar M Subramaniyam[#], Md. Monirul Islam[#], Taslima Akhter, Dean Cardillo, Konstantin Konstantinov^{*}, Hua Kun Liu^{*}, Shi Xue Dou

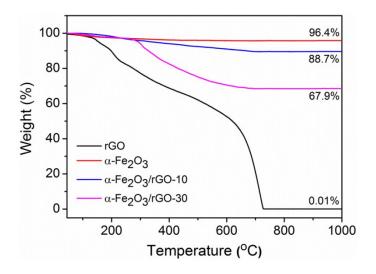
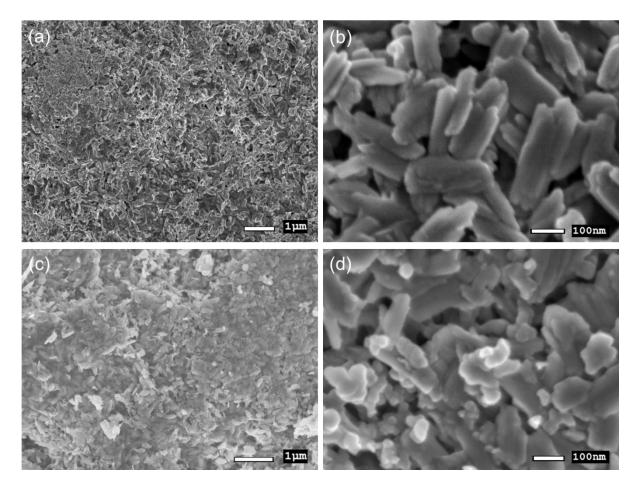



Fig. S-1. Thermogravimetric analysis of the α -Fe₂O₃/rGO composites compared with α -Fe₂O₃ nanorods and rGO in air.

Fig. S-2. FESEM images of fresh/before cycling electrode at (a) low and (b) high magnification. The fresh electrode consisted of active materials (α -Fe₂O₃/rGO), carbon Super P and binder; (c-d) morphology of electrode after 100 cycles at 1A/g. The cycled cell was disassembled in glove box and washed several times in the solvent, DEC of the used electrolyte (1 M LiPF₆ in 1:1 (v/v) of EC:DEC) and dried overnight prior to taking FESEM.