Thermoelectric properties of highly-mismatched alloys GaN_xAs_{1-x} from first- to secondprinciples methods: Energy Conversion

A. H. Reshak^{1,2*}

¹New Technologies - Research Centre, University of West Bohemia, Univerzitni 8, 306 14 Pilsen, Czech republic ² Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis, Malaysia

Fig. S1:

Fig. S2:

Fig. S3:

Supplementary materials

Fig. S1: Calculated density of states for GaN_xAs_{1-x} (x=0.0, 0.25, 0.5, 0.75 and 1.0) alloys. Which clearly show that replacing As atoms by N atoms cause significant influence in the density of states.

Fig. S2: (a, b) Calculated carrier's mobility vs. carrier's concentration of GaN_xAs_{1-x} (x=0.0, 0.25, 0.5, 0.75 and 1.0) alloys. We have compared our results with the previous experimental data for GaAs [58-60] good agreement was found.

Fig. S3: Calculated Seebeck coefficient vs. temperature. We have compared our calculated *S* of GaN_xAs_{1-x} (x=0.0, 0.25, 0.5, 0.75 and 1.0) alloys to the measured and calculated *S* for GaAs [58]. It has been found that the increase in the calculated *S* for GaN_xAs_{1-x} (x=0.0, 0.25, 0.5, 0.75 and 1.0) with increasing the temperature is consistent with previously measured and calculated *S* of GaAs [58], good agreement was found.

References:

[58] https://escholarship.org/uc/item/2h7846vd.pdf

[59] G. Homm, P. J. Klar, J. Teubert, and W. Heimbrodt. Seebeck coefficients of n-type (Ga,In)(N,As), (B,Ga,In)As, and GaAs. Applied Physics Letters, 93:042107, 2008.

[60] D. L. Rode and S. Knight. Electron transport in GaAs. Physical Review B, 3(8):2534, 1971.