Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Green synthesis of GeO_2 /graphene composites as anode material for Lithium-ion battery with high capacity

Wei Wei,^{a, b} Aihua Tian,^{a, b} Fangfang Jia ^{a, b}, Kefeng Wang,^a Peng Qu*^{a, b} and Maotian Xu*^a School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China, E-mail: qupeng0212@163.com, xumaotian@163.com.

^bCollege of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China

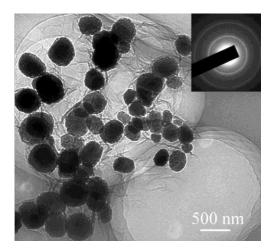


Fig. S1. TEM image and the corresponding SAED patterns (inset) of the GeO₂/graphene composites.

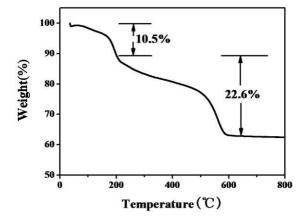


Fig. S2. TGA curves of the as-prepared GeO₂/graphene composite.

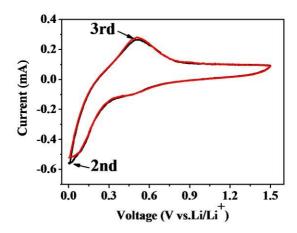


Fig. S3. CV curves of the p-GeO₂ electrode.

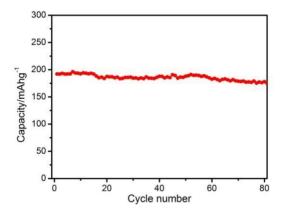


Fig. S4. Cycling performances of the pure graphene at a current density of $100\ mA\ g^{-1}$.

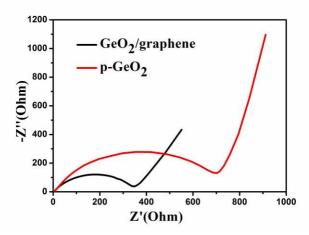


Fig. S5. Electrochemical impedance spectroscopy of p-GeO $_2$ and GeO $_2$ /graphene composites electrodes before cycling.