Electronic Supplementary Information

Theoretical Insight into the Binding Affinity Enhancement of Serine with the Uranyl Ion through Phosphorylation

Qun-Yan Wu,[†] Jian-Hui Lan,[†] Cong-Zhi Wang,[†] Zhi-Fang Chai,^{†‡} and Wei-Qun Shi*[†]

[†]Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China

[‡]School of Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China

Corresponding Author

*E-mail: shiwq@ihep.ac.cn, Tel: 86-10-88233968.

Fig. S1. Structures of the most stable protonated (cation, $SerH_2$), zwitterionic (neutral, SerH) and deprotonated (anion, Ser) serine optimized in the aqueous phase at the B3LYP/6-311+G(d)/SMD level of theory. Relative energies (kcal/mol) are provided at the same level of theory. H, C, N and O atoms are represented by white, green, blue and red spheres, respectively.

Fig. S2. Structures of the most stable neutral (pSerH₃), mono-anionic (pSerH₂⁻), di-anionic (pSerH²⁻) and tri-anionic (pSer³⁻) phosphoserine optimized in the aqueous phase at the B3LYP/6-311+G(d)/SMD level of theory. Relative energies (kcal/mol) are provided at the same level of theory. H, C, N, O and P atoms are represented by white, green, blue, red and orange spheres, respectively.

Fig. S3. Structures of the 1:3 type complexes of uranyl ion with zwitterionic (SerH) serine optimized at the B3LYP/ECP60MWB-SEG/6-311+G(d)/SMD level of theory in the aqueous phase. H, C, N, O and U atoms are represented by white, green, blue, red and purple spheres, respectively.

Fig. S4. Structures of the 1:3 type complexes of uranyl ion with dianionic phosphoserine (pSerH²⁻) optimized in the aqueous phase at the B3LYP/ECP60MWB-SEG/6-311+G(d)/SMD level of theory. H, C, N, O, P and U atoms are represented by white, green, blue, red, orange and purple spheres, respectively.

Fig. S5. Structures of the 1:4 and 1:5 type complexes of uranyl ion with zwitterionic (SerH) serine optimized at the B3LYP/ECP60MWB-SEG/6-311+G(d)/SMD level of theory in the aqueous phase. H, C, N, O and U atoms are represented by white, green, blue, red and purple spheres, respectively.

Level of theory	U=O	U-O _C	U-O _W	∠0=U=0	ν_{s}	ν_{as}
B3LYP/6-311+G(d)/SMD	1.770	2.561	2.490	178.75	865	906
B3LYP/6-31+G(d)/SMD	1.772	2.537	2.514	178.68	876	920
B3LYP-D3/6-311+G(d)/SMD	1.769	2.544	2.491	178.74	867	908
B3LYP-D3/6-31+G(d)/SMD	1.771	2.519	2.518	178.60	878	922
BP86/6-311+G(d)/SMD	1.796	2.531	2.477	178.35	814	867
BP86/6-31+G(d)/SMD	1.797	2.504	2.502	178.01	824	879
PBE/6-311+G(d)/SMD	1.791	2.530	2.480	178.32	820	873
PBE/6-31+G(d)/SMD	1.793	2.503	2.506	177.98	830	885
M06/6-311+G(d)/SMD	1.741	2.569	2.481	178.87	909	936
M06/6-31+G(d)/SMD	1.744	2.551	2.504	178.84	919	952

Table S1. Average U-O bond distances (Å), O=U=O angles (degree) and the UO_2^{2+} harmonic vibrational frequencies (v_s and v_{as} , cm⁻¹) for the $[UO_2(_2)(H_2O)_3]^+$ -1 complex optimized in the aqueous solution at the different level of theory.

Table S2. Electron Density (ρ , au) of U-O Bond Critical Point and Its Laplacian ($\nabla^2 \rho$, au) as well as Wiberg Bond Indices (WBIs) of U-O bonds for the 1:2 Type Complexes at the B3LYP/ECP60MWB-SEG/6-311+G(d) Level of Theory.^a

Complexes	U-O _C			U-O _P			U-O _W		
	ρ	$\nabla^2\rho$	WBIs	ρ	$ abla^2 ho$	WBIs	ρ	$ abla^2 ho$	WBIs
$[UO_2(SerH)_2(H_2O)]^{2+}-1$	0.048	0.157	0.368	-	-	-	0.052	0.203	0.403
$[UO_2(SerH)_2(H_2O)]^{2+}-2$	0.048	0.157	0.367	-	-	-	0.054	0.214	0.413
[UO ₂ (pSerH ₂) ₂ (H ₂ O)]-1	0.049	0.161	0.373	-	-	-	0.052	0.203	0.405
$[UO_2(pSerH_2)_2(H_2O)]-2$	0.048	0.157	0.370	0.044	0.145	0.382	0.052	0.200	0.404
$[UO_2(pSerH_2)_2(H_2O)]-3$	-	_	-	0.045	0.151	0.399	0.055	0.213	0.425
$[UO_2(pSerH)_2(H_2O)]^{2}-1$	-	-	-	0.058	0.192	0.511	0.048	0.186	0.397
$[UO_2(pSerH)_2(H_2O)]^{2-2}$	0.045	0.149	0.364	0.061	0.199	0.515	0.050	0.192	0.394
$[UO_2(pSerH)_2(H_2O)]^{2-3}$	0.048	0.157	0.371	-	-	-	0.051	0.199	0.396

^aThe O_C , O_P and O_W denote the oxygen atom of the carboxyl and phosphate groups and water molecule, respectively.

Table S3. Average U-O Bond Distances (Å), O=U=O Angles (degree) and the UO_2^{2+} Harmonic Vibrational Frequencies (v_s and v_{as} , cm⁻¹) for the 1:3 Type Complexes Optimized in the Aqueous Phase at the B3LYP/ECP60MWB-SEG/6-311+G(d) Level of Theory.

complexes	amodes	U=O	^b U-O _{Cbi}	^b U-O _{Pbi}	^b U-O _{Cm}	^b U-O _{Pm}	∠0=U=0	ν_{s}	v_{as}
$[UO_2(SerH)_3]^{2+}-1$	$2C_{bi}1C_m$	1.775	2.570	-	2.321	-	179.69	847	893
$[UO_2(SerH)_3]^{2+}-3$	$3C_{bi}$	1.773	2.591	-	-	-	179.76	850	896
$[UO_2(pSerH_2)_3]^-1$	$2C_{bi}1P_m$	1.776	2.561	-	-	2.331	178.66	849	894
$[UO_2(pSerH_2)_3]^2$	$2C_{bi}1C_{m}$	1.776	2.558	-	2.369	-	179.38	849	890
$[UO_2(pSerH_2)_3]^-3$	$3C_{bi}$	1.775	2.568	-	-	-	179.56	854	896
$[UO_2(pSerH_2)_3]^4$	$1C_{bi}1P_{bi}1P_m$	1.775	2.592	2.589	-	2.328	178.46	849	895
$[UO_2(pSerH_2)_3]^-5$	$1C_{bi}1P_{bi}1C_m$	1.774	2.549	2.596	2.328	-	179.10	849	890
$[UO_2(pSerH_2)_3]^-6$	$2C_{bi}1P_{bi}$	1.774	2.595	2.630	-	-	178.81	853	895
$[UO_2(pSerH_2)_3]^-7$	$2P_{bi}1P_m$	1.773	-	2.593	-	2.336	179.11	854	902
$[UO_2(pSerH_2)_3]^8$	$2P_{bi}1C_m$	1.775	-	2.591	2.342	-	179.60	849	896
$[UO_2(pSerH_2)_3]^-9$	$1C_{bi}2P_{bi}$	1.773	2.557	2.631	-	-	179.06	855	898
$[UO_2(pSerH_2)_3]^10$	$3P_{bi}$	1.767	-	2.643	-	-	179.81	856	898
$[UO_2(pSerH)_3]^{4-1}$	$2P_{bi}1P_m$	1.795	-	2.503	-	2.324	179.62	800	845
$[UO_2(pSerH)_3]^{4-}-2$	$2P_{bi}1C_m$	1.791	-	2.491	2.368	-	179.21	808	848
$[UO_2(pSerH)_3]^{4-}-3$	$1C_{bi}1P_{bi}1P_m$	1.789	2.602	2.472	-	2.275	177.59	809	856
$[UO_2(pSerH)_3]^{4-4}$	$3P_{bi}$	1.792	-	2.563	-	-	179.87	810	852
$[UO_2(pSerH)_3]^{4-}-5$	$1C_{bi}2P_{bi}$	1.789	2.655	2.520	-	-	178.12	822	864
$[UO_2(pSerH)_3]^{4-}-6$	$1C_{bi}1P_{bi}1C_m$	1.784	2.570	2.467	2.359	-	178.08	828	869
$[UO_2(pSerH)_3]^{4-7}$	$2C_{bi}1P_m$	1.784	2.574		-	2.250	178.37	819	872
$[UO_2(pSerH)_3]^{4-8}$	$2C_{bi}1P_{bi}$	1.784	2.597	2.483	-	-	178.19	832	872
$[UO_2(pSerH)_3]^{4-}-9$	$2C_{bi}1C_m$	1.777	2.565	-	2.358	-	179.32	847	888
$[UO_2(pSerH)_3]^{4-}-10$	$3C_{bi}$	1.776	2.573	-	-	-	179.80	850	892

 $^a The bidentate carboxyl (C_{bi}) and phosphate (P_{bi}) group, the mono-dentate carboxyl (C_m) and phosphate (P_m) group$

^bThe O_{Cbi}, O_{Pbi}, O_{Cm} and O_{Pm} denote the oxygen atom of the bidentate carboxyl and phosphate groups and mono-dentate carboxyl and phosphate groups, respectively.

Table S4. Average U-O Bond Distances (Å), O=U=O Angles (degree) and the UO_2^{2+} Harmonic Vibrational Frequencies (v_s and v_{as} , cm⁻¹) for the 1:4 and 1:5 TypeComplexes Optimized in the Aqueous Phase at theB3LYP/ECP60MWB-SEG/6-311+G(d) Level of Theory.

complexes	amodes	U=O	^b U-O _{Cbi}	d U-O _{Cm}	∠O=U=O	ν_{s}	v_{as}
$\left[\mathrm{UO}_2(\mathrm{SerH})_4\right]^{2+}$	$1C_{bi}4C_m$	1.782	2.604	2.386	178.90	832	879
$\left[\mathrm{UO}_2(\mathrm{SerH})_5\right]^{2+}$	5C _m	1.782	-	2.451	179.30	828	874

^aThe bidentate carboxyl (C_{bi}) and mono-dentate carboxyl (C_m)

^bThe O_{Cbi} and O_{Cm} denote the oxygen atom of the bidentate carboxyl and mono-dentate carboxyl group, respectively.

Table S5. Calculated changes of the Gibbs free energy (ΔG_{sol} , kcal/mol) for the reactions between the uranyl Ion and the serine at the B3LYP/ECP60MWB-SEG/6-311+G(d)/SMD level of theory in the aqueous solution.

Reactions	ΔG_{sol}
$SerH+[UO_2(H_2O)_5]^{2+}=[UO_2SerH(H_2O)_3]^{2+}+2H_2O$	-10.99
2 SerH+ $[UO_2(H_2O)_5]^{2+}=[UO_2(SerH)_2(H_2O)]^{2+}+4H_2O$	-18.78
3 SerH+ $[UO_2(H_2O)_5]^{2+}=[UO_2(SerH)_3]^{2+}+5H_2O$	-20.24
4 SerH+ $[UO_2(H_2O)_5]^{2+}=[UO_2(SerH)4]^{2+}+5H_2O$	-15.67
5 SerH+ $[UO_2(H_2O)_5]^{2+}=[UO_2(SerH)_5]^{2+}+5H_2O$	-4.50

Geometrical Results for the Complexes of 1:3 Uranyl Ion and Serine/Phosphoserine

The selected U-O bond distances, O=U=O bond angles for the 1:3 type complexes are listed in Table S2, SI. The U=O bond distances in the two types of complex $[UO_2(SerH)_3]^{2+}$ and $[UO_2(pSerH_2)_3]^{-}$ are ~ 1.77 Å, which are shorter than those in the complexes $[UO_2(pSerH)_3]^{4-}$. It can be seen that the U-O_{Cbi} bond distances between the uranium atom and the oxygen atom of the bidentate carboxyl groups in conformer $[UO_2(SerH)_3]^{2+}$ -1 are 2.570 Å, which are somewhat 0.02 longer than those of the hexa-coordinated conformers and $[UO_2(SerH)_3]^{2+}-2$. Obviously, the distances of U-O_{Cbi} bonds in the complexes $[UO_2(SerH)_3]^{2+}$ are ~ 0.30 Å longer than that of U-O_{Cm} bond between the uranium atom and the oxygen atom of mono-dentate carboxyl group. For the 1:3 type mono-anionic phosphoserine complexes, the distances of U-O_{Cbi} bonds are ~ 2.55-2.60 Å, which are also longer compared to those of U-O_{Cm} bonds. Notably, the distances of U-O_{Pbi} bonds between the uranium atom and the oxygen atom of bidentate phosphate group are ~ 2.59 Å for the complexes $[UO_2(pSerH_2)_3]^{-1}$ with penta-coordination mode, while the corresponding values are ~ 2.63 Å for the complexes with hexa-coordination mode. And the distances of U-O_{Pbi} bonds are longer compare to those of U-O_{Pm} bonds between the uranium and the oxygen atom of the mono-dentate phosphate group. For the 1:3 type dianionic phosphoserine complexes, the distances of U-O_{Cbi} bonds have obvious difference, with the longest and shortest bond distance of 2.655 and 2.565 Å in the conformers $[UO_2(pSerH)_3]^{4-5}$ and $[UO_2(pSerH)_3]^{4-9}$, respectively. Obviously, the distances of U-O_{Cbi} bonds are somewhat longer compared to those of U-O_{Pbi} bonds in the 1:3 type complexes $[UO_2(pSerH)_3]^4$. It can be seen that the distances of U-O_{Cm} bonds are ~ 2.36 Å, while those of U-O_{Pm} bonds decrease with the decreasing number of bidentate phosphate groups in the complexes $[UO_2(pSerH)_3]^4$. For example, the distance of U-O_{Pm} bond is 2.324 Å in conformer $[UO_2(pSerH)_3]^{4-1}$ with two bidentate phosphate groups, and the corresponding value decreases to 2.275 Å in conformer $[UO_2(pSerH)_3]^{4-3}$ with a bidentate phosphate and carboxyl group, it changes to 2.250 Å in conformer $[UO_2(pSerH)_3]^{4-3}$ with a bidentate phosphate and carboxyl group. It is worthy to notice that the distances of U-O_{Pbi} and U-O_{Pm} bonds in the complexes $[UO_2(pSerH)_3]^4$ are somewhat shorter than those in the complexes $[UO_2(pSerH_2)_3]^7$, which also indicates that the binding affinity of $-PO_4^{2-2}$ group toward the uranyl ion is stronger than that of $-PO_4H^-$ group. Additionally, compared to the 1:1 and 1:2 type complexes, the O=U=O angles in all the 1:3 type complexes are even more close to linearity with the maximum disparity of 2.4° for conformer $[UO_2(pSerH)_3]^4-3$.