Supporting Information

Design of Triphenylamine Appended Anthracene Derivatives: Electro-polymerization and their Electro-chromic Behaviours

Dines Chandra Santra, Sanoy Mondal and Sudip Malik

1.	Synthesis procedure of all monomers	2-3
2.	1H NMR, 13C NMR and MALDI-TOF spectra of all monomers	4-8
3.	Scheme of Electropolymerization and oxidation process path	9
4.	Scan rate dependent UV-Vis spectra	9
5.	Repeated CV scanning of 2-TPACNANT	10
6.	Cyclic voltammogram of ferrocene	10
7.	IR spectra of two monomer and two polymers	11
8.	Cyclic voltammograms of the fabricated electrochromic device based on pol	ymer

12

film for (a) p-2,6-TPAANT and (b) p-2,6-TPACNANT.

1. Synthesis of all monomers:

2. 4-N,N-diphenylaminophenyl-2-(4-(9,10-bis(octyloxy)anthracen-6-yl)phenyl)acrylonitrile (2-TPACNANT):

Dry and degassed EtOH (8 mL) and 2 M aqueous Na₂CO₃ (16 mL) were added to the solution of compound **1** (503.28 mg, 1.01 mmol), compound **B** (513.55 mg, 1.00 mmol) and Pd(PPh₃)₄ (60 mg, 0.052 mmol) in 32 mL toluene under nitrogen atmosphere. After being refluxed at 110° C for 48 h, the mixture was poured into water (100 mL). The organic layer was extracted with chloroform (3×40 mL) and the combined organic layers were dried over anhydrous Na₂SO₄. The organic solvent was evaporated under reduced pressure and the crude product was purified by silica column chromatography eluting with petroleum ether/CHCI₃ (v:v, 6:4) to afford compound **2-TPACNANT** as a yellow solid (510 mg, 63%).

¹H-NMR (400 MHz, CDCl₃, ppm): δ 8.53 (s, 1H), 8.38 (d, 1H), 8.30 (d, 1H), 7.85 (d, 2H), 7.74-7.83 (m, 4H), 7.51 (s,1H), 7.49 (d, 2H), 7.33 (t, 4H), 7.18 (d, 3H7.12-7.15 (m, 3H), 7.06-7.12 (m, 2H), 4.20 (t, 4H), 2.04-2.09 (m, 4H), 1.66-1.71 (m, 4H), 1.32-1.49(m, 20H), 0.89-0.93 (m, 6H). ¹³C-NMR (CDCl₃, ppm) δ 150.20, 148.16, 147.75 146.79, 146.71, 141.50, 136.51, 134.31, 131.41, 130.88, 129.74,129.68, 129.63, 127.99, 127.91, 126.66, 126.37, 125.90, 125.68, 125.52, 125.45, 124.82, 124.57, 124.52, 124.49, 123.92, 122.99, 122.92. 121.08, 120.56, 118.86,107.49, 32.03, 30.90, 30.86, 29.76, 26.44, 22.86, 14.26; MALDI-TOF HRMS: **805.85** [M⁺] (calcd for C₅₇H₆₀N₂O₂ : **805.10**).

3. 2,6-bis-[4-(N,N-diphenylamino)phenyl]-acrylonitrile-(9,10-bis(octyloxy)anthracene

(2,6-TPACNANT):

Dry and degassed EtOH (4 mL) and 2 M aqueous Na₂CO₃ (8 mL) were added to the solution of compound **1** (464 mg, 0.93 mmol), compound **A** (272 mg, 0.46 mmol) and Pd(PPh₃)₄ (30 mg, 0.026 mmol) in 16 mL toluene under nitrogen atmosphere. After being refluxed at 110° C for 48 h, the mixture was poured into water (100 mL) and the organic layer was extracted with chloroform (3×40 mL) and the combined organic layers were dried over anhydrous Na₂SO₄. The organic solvent was evaporated under reduced pressure and the crude product was purified by silica column chromatography eluting with petroleum ether/CHCI₃ (v:v, 6:4) to afford compound **2,6-TPACNANT** as a yellow solid (280 mg, 51%). ¹H-NMR (400 MHz, CDCl₃, ppm): δ 8.53 (s, 2H), 8.39 (d, 2H), 7.86 (d, 4H), 7.78-7.83 (m, 8H), 7.52 (s, 2H), 7.32 (t, 8H), 7.11-7.7.18 (m, 12H), 7.07 (d, 4H), 4.25 (t, 4H), 2.07-2.10 (m, 4H), 1.60-1.73 (m, 4H), 1.32-1.49(m, 20H), 0.89-

0.93 (m, 6H). ¹³C-NMR (CDCl₃, ppm) δ 150.20, 148.16, 147.75 146.79, 146.71, 141.50, 136.51, 134.31, 131.41, 130.88, 129.74, 129.68, 129.63, 127.99, 127.91, 126.66, 126.37, 125.90, 125.68, 125.52, 125.45, 124.82, 124.57, 124.52, 124.49, 123.92, 122.99, 122.92. 121.08, 120.56, 118.86, 107.49, 32.03, 30.90, 30.86, 29.76, 26.44, 22.86, 14.26; MALDI-TOF HRMS: **1176.52** [M⁺] (calcd for C₈₄H₇₈N₂O₂ : **1175.54**).

4. 2,6-bis-[4-(N,N-diphenylamino)phenyl]-(9,10-bis(octyloxy)anthracene (2,6-TPAANT):

Dry and degassed EtOH (8 mL) and 2 M aqueous Na_2CO_3 (16 mL) were added to the solution of compound **2** (560 mg, 1.5 mmol), compound **A** (355 mg, 0.60 mmol) and Pd(PPh₃)₄ (34 mg, 0.03 mmol) in 32 mL toluene under nitrogen atmosphere. After being refluxed at 110^{0} C for 48 h, the mixture was poured into water (100 mL) and the organic layer was extracted with chloroform (3×40 mL) and the combined organic layers were dried over anhydrous Na_2SO_4 . The organic solvent was evaporated under reduced pressure and the crude product was purified by silica column chromatography eluting with petroleum ether/CHCI₃ (v:v, 6:4) to afford compound **2,6-TPACNANT** as a bright yellow solid (344 mg, 62%).

¹H-NMR (CDCl₃, ppm): δ 8.45 (s, 2H), 8.33 (d, 2H), 7.76 (d, 2H), 7.69 (d, 4H), 7.31 (t, 8H), 7.17-7.21 (m,12H), 7.06 (t, 4H), 4.21 (t, 4H), 2.05-2.08 (m, 4H), 1.68-1.71 (m, 4H), 1.28-1.49(m, 20H), 0.89 (t, 6H). ¹³C-NMR (500 MHz, CDCl₃,ppm) δ 147.81, 136.92, 134.98, 129.48, 128.03, 125.63, 125.15, 124.77, 123.93, 123.24, 119.44, 32.00, 30.92, 29.75, 29.52, 26.59, 22.81, 14.25. MALDI-TOF HRMS: 920.90 [M⁺] (calcd for C₆₆H₆₈N₂O₂ : **921.26**).

2. 1 H-NMR and 13 C-NMR and MALDI-TOF HRMS spectra:

Figure Sa. ¹H-NMR spectrum of **2-TPACNANT**.

Figure Sb. ¹³C-NMR spectrum of **2-TPACNANT**

Figure Sc. MALDI-TOF spectrum of 2-TPACNANT

Figure Sd.¹H NMR spectrum of **2,6-TPACNANT**

Figure Se. ¹³C-NMR spectrum of **2,6-TPACNANT**

Figure Sf. MALDI-TOF spectrum of 2,6-TPACNANT

Figure Sg.¹H NMR spectrum of **2,6-TPAANT**

Figure Sh. ¹³C NMR spectrum of **2,6-TPAANT**

Figure Si. MALDI-TOF spectrum of 2,6-TPAANT

Scheme S1. Electropolymerization and the possible path of oxidation process.

Figure S1. Absorption spectra of (a) *p***-2,6-TPAANT** and (b) *p***-2,6-TPACNANT** on ITO electrodes obtained after 4, 6, 9, and 12 CV and 15 scan cycles in electro-polymerization process. (Inset) Relationship between the absorbance of **p-2,6-TPAANT** electrodes at 480 nm and **p-2,6-TPAANT** at 436 nm vs the number of CV cycles.

Figure S2. Repeated CV scanning of (a) **2-TPACNANT** between 0 and 1.6 V in 0.1 M Bu_4NClO_4/DCM with a scan rate of 50 mV/s. The inset in displays the first and second scan.

Figure S3. The CV diagram of 1mM ferrocene standard in 0.1 M Bu₄NClO₄/MeCN with a scan rate of 50 mV/s.

Figure S4. The polymer film removed from ITO glass.

Figure S5. IR spectra of the monomer and polymer of (a) 2,6-TPAANT and p-2.6-TPAANT (b) 2,6-TPACNANT and p-2,6-TPACNANT.

Figure S6. Cyclic voltammograms of the fabricated electrochromic device based on polymer film for (a) *p*-2,6-TPAANT and (b) *p*-2,6-TPACNANT.