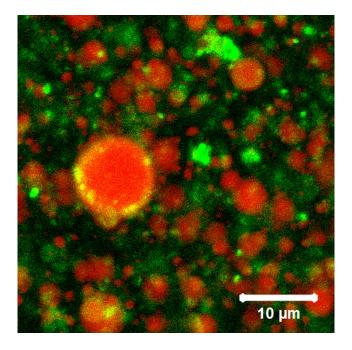
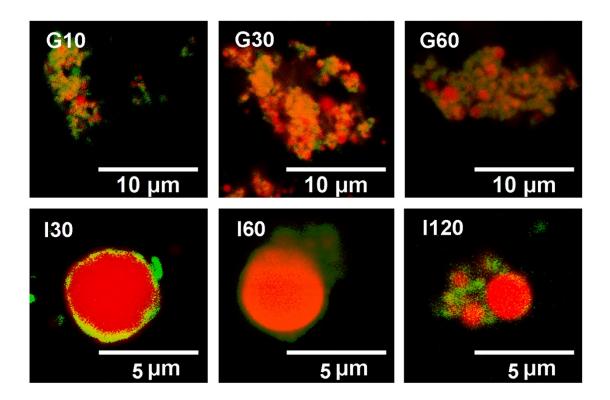
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

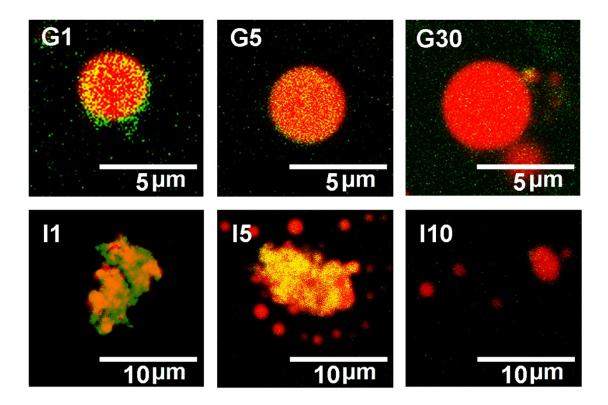
Coating oil droplets with rice proteins to control the release rate of encapsulated betacarotene during in vitro digestions


Tao Wang^{a,b}, Ren Wang^a, Zhengxing Chen*a, and Qixin Zhong*b

^a State Key Laboratory of Food Science and Technology, National Engineering Laboratory for Cereal Fermentation Technology, and School of Science and Technology, Jiangnan University, Wuxi 214122, PRC.


^b Department of Food Science and Technology, University of Tennesse, Knoxville, TN, 37996-4539, USA.

E-mail: zxchen 2008@126.com (Z. Chen), qzhong@utk.edu (Q. Zhong)


Supporting information

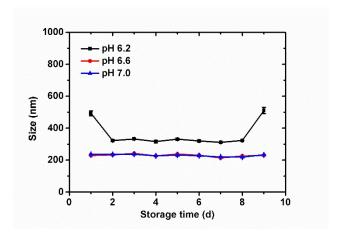

Figure S1. CLSM image of the cream collected after centrifuging the emulsion titrated to pH 6.4.

Figure S2. CLSM micrographs of the emulsion prepared at pH 6.6 after treatment in a simulated gastric juice for 10 (G10), 30 (G30), and 60 min (G60), as well as the same emulsion treated in the gastric juice for 2 h and subsequently treated in a simulated intestinal juice for 30 (I30), 60 (I60) and 120 min (I120).

Figure S3. CLSM micrographs of the emulsion prepared at pH 6.2 after treatment in a simulated gastric juice for 1 (G1), 5 (G5), and 30 min (G30), as well as the same emulsion treated in the gastric juice for 2 h and subsequently treated in a simulated intestinal juice for 1 (I1), 5 (I5), and 10 min (I10).

Figure S4. Hydrodynamic diameters of emulsion samples prepared at pH 6.2, 6.6, and 7.0 during storage at room temperature.