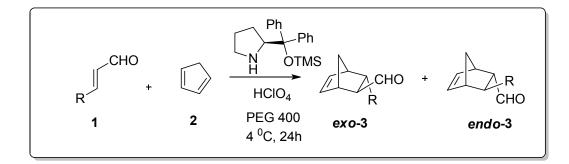
Supplementary Information

Caveat in stereochemical outcome of organocatalytic Diels-Alder reaction in PEG-400

Pantapalli. M. Anitha,^{*a*} Prathama S. Mainkar,^{*a**} Shivakrishna Kallepu,^{*a*} V.S. Phani Babu,^{*b*} Cirandur Sureh Reddy ^{*c*} and Srivari Chandrasekhar^{*a**}

^aDivision of Natural Product Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India. ^bCentre for NMR & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India. ^cDepartment of chemistry, Sri Venkateswara University, Tirupati, India

E-mail: srivaric@iict.res.in

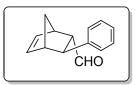

LIST OF CONTENTS:

	Pages
1. General details	S-2
2. Experimental procedures and analytical data	S-2 to S-5
3. ¹ H NMR, ¹³ C NMR spectra	S-6 to S-10
4. NOE spectra	S-11 to S-18
5. DSC data	S-19 to S-22
6. HPLC Data	S-23 to S-25

1. General details

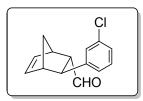
General information: Unless otherwise noted, all reagents and solvents were purchased from commercial suppliers and used without purification. Catalysts were obtained from Sigma-Aldrich and used without further purification. Reactions were monitored by using thin-layer chromatography (SiO₂). TLC plates were visualized with UV light (254 nm), iodine treatment or using Phosphomolibdic acid stain. Column chromatography was carried out using silica gel (100-200 mesh) packed in glass columns. NMR spectra were recorded at 300, 400, 500, 600 MHz (H) and at 75, 101, 126, 151 MHz (C), respectively. Chemical shifts (δ) are reported in ppm, using the residual solvent peak in CDCl₃ (H: δ = 7.26 and C: δ = 77.0 ppm) as internal standard, and coupling constants (*J*) are given in Hz. DSC data were recorded in DSC Q200 V24.4 Build 116. HPLC Data were recorded using OJ-H Column (250mm X 4.6mm, 5u) at 210nm by converting aldehyde into their corresponding alcohol.

2. Experimental procedures and analytical data

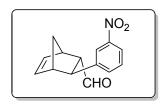


a. General procedure for Diels-Alder reaction:

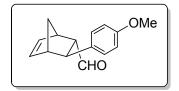
To a solution of (*S*)-2-(diphenyl((trimethylsilyl)oxy)methyl)pyrrolidine (5 mol%) in PEG-400 (1M) was added HClO₄ (20 mol%) followed by the addition of α - β unsaturated aldehyde (0.5 mmol). The reation mixture was allowed to stirr for 5 min. To this freshly distilled cyclopentadiene (1.5 mmol) was slowly added and the resulting solution was stirred at 4 °C for 24h. The reaction mixture was extracted twice with ether and the combined organic extracts were washed successively with water and brine then dried over Na₂SO₄. The ether layer was


concentrated under vaccum and purified by Silica gel column chromatography (5% EA in Hexane). Ratio of *endo* and *exo* isomers were determined by ¹H-NMR.

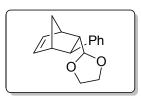
Endo and *exo* isomers of 3-phenylbicyclo[2.2.1]hept-5-ene-2-carbaldehyde (Table 4, entry 1).


Prepared according to the general procedure described above with trans-cinnamaldehyde (100 mg, 0.75mmol), cyclopentadiene (150 mg, 2.27 mmol) to afford the desired compound as a 10:90 mixture of *exo* and *endo* isomers (colorless oil, 65%). *endo isomer* : ¹H NMR (300MHz, CDCl₃) 9.60 (d, J =2.3 Hz, 1H), 7.13-7.34 (m, 5H), 6.42 (dd, J = 3.3, 5.8 Hz, 1H), 6.17 (dd, J = 2.8, 5.8 Hz, 1H), 3.34 (brs, 1H), 3.14 (brs, 1H), 3.09 (d, J = 4.4 Hz, 1H), 2.97 (dd, J = 2.3, 3.5, 4.9 Hz, 1H), 1.81 (d, J = 8.7 Hz, 1H), δ 1.64-1.60 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 203.5, 143.5, 139.2, 133.8, 128.6, 127.3, 126.2, 60.8, 48.4, 47.1, 45.7, 45.1. *exo isomer* : ¹H NMR (300MHz, CDCl₃)) 9.93 (d, J =2.1 Hz, 1H), 7.13-7.34 (m, 5H), 6.34 (dd, J = 3.4, 5.5 Hz, 1H), 6.08 (dd, J = 3.0, 5.5 Hz, 1H), 3.73(t, J =3.8 Hz, 1H), 3.23 (m, 2H), 2.60 (dd, J = 1.5, 3.4, Hz, 1H), 1.61-1.64 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 202.8, 142.7, 136.3, 136.1, 128.0, 127.7, 126.1, 59.2, 48.2, 47.3, 45.3, 45.2.

Endo and *exo* isomers of 3-(3-chlorophenyl)bicyclo[2.2.1]hept-5-ene-2-carbaldehyde (Table 4, entry 2).

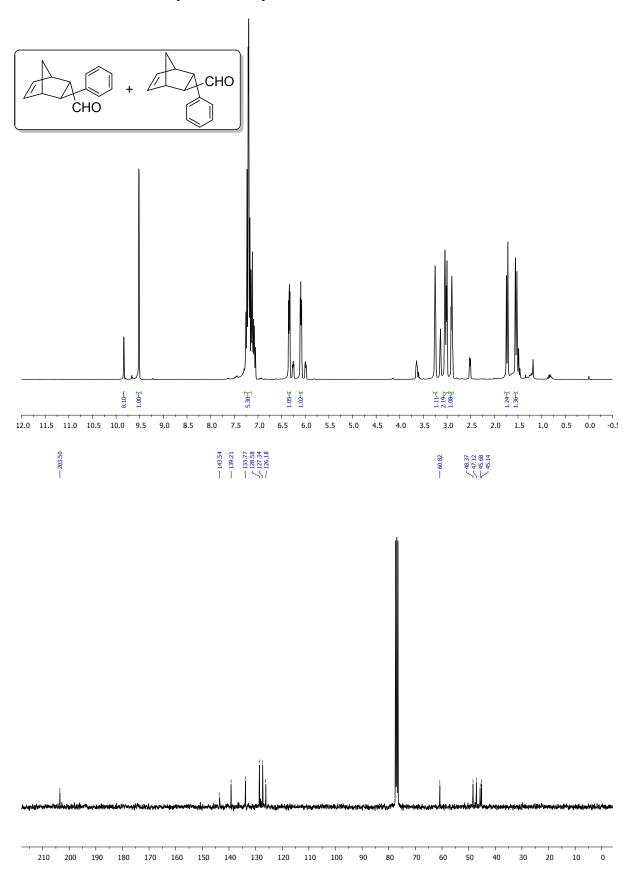

Prepared according to the general procedure described above from of (*E*)-3chlorocinnamaldehyde (100 mg, 0.602 mmol) and cyclopentadiene (119 mg, 1.8 mmol) to afford the desired compound as a 12:88 mixture of *exo* and *endo* isomers (yellow oil, 62%). *endo isomer* : ¹H NMR (500 MHz, CDCl₃) δ 9.53 (d, *J* = 1.9 Hz, 1H), 7.20 – 7.13 (m, 2H), 7.12 – 7.03 (m, 2H), 6.34 (dd, *J* = 5.6, 3.3 Hz, 1H), 6.10 (dd, *J* = 5.6, 2.8 Hz, 1H), 3.29 (brs, 1H), 3.04 (d, *J* = 1.3 Hz, 1H), 3.00 (d, *J* = 4.6 Hz, 1H), 2.87 (ddd, *J* = 5.1, 3.5, 2.0 Hz, 1H), 1.70 (d, J = 8.8 Hz, 1H), 1.55-1.47(m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 203.8, 145.8, 139.1, 134.4,133.9, 129.8, 127.4, 126.4, 125.7, 60.9, 48.2, 47.1, 45.3, 45.0. *exo isomer* : ¹H NMR (500 MHz, CDCl₃) δ 9.83 (d, J = 1.8 Hz, 1H), 7.20 – 7.13 (m, 2H), 7.12 – 7.03 (m, 2H), 6.29 (dd, J = 5.6, 3.2 Hz, 1H), 5.99 (dd, J = 5.6, 2.8 Hz, 1H), 3.68 – 3.63 (m, 1H), 3.15 (d, J = 19.0 Hz, 2H), 2.48 (t, J = 6.4 Hz, 1H), 1.50 (dd, J = 3.7, 1.6 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 202.1, 144.8, 136.6, 136.3, 134.3, 129.4, 128.0, 126.5, 126.2, 59.5, 48.4, 47.6, 45.5.

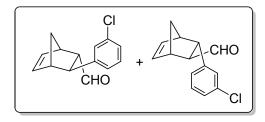
Endo and *exo* isomers of 3-(3-nitrophenyl)bicyclo[2.2.1]hept-5-ene-2-carbaldehyde (Table 4, entry 3).

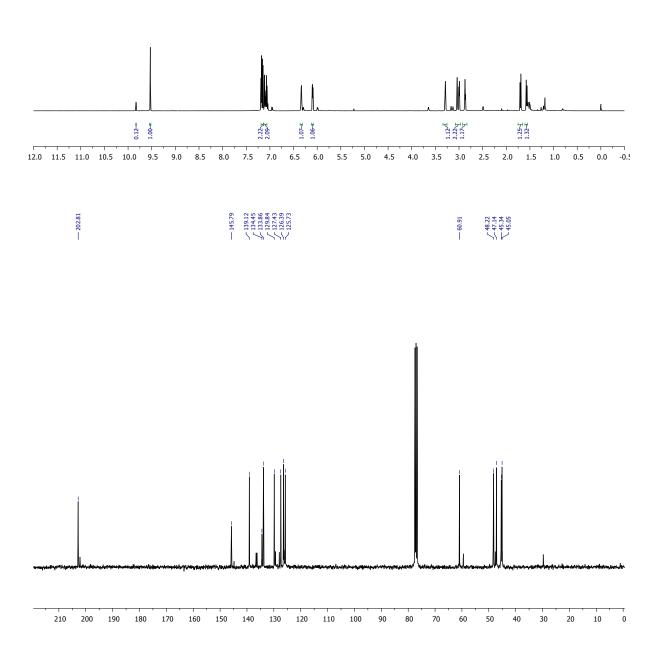

Prepared according to the general procedure described above from of (E)-3nitrocinnamaldehyde (100 mg, 0.564 mmol) and cyclopentadiene (112 mg, 1.69 mmol) to afford the desired compound as a 30:70 mixture of exo and endo isomers (yellow oil, 56%). *endo isomer* : ¹H NMR (300 MHz, CDCl₃) 9.64 (d, J = 1.6 Hz, 1H), 8.10 – 7.88 (m, 2H), 7.38-7.30 (m, 2H), 6.43 (m, 1H), 6.20 (dd, J = 5.6, 2.7 Hz, 1H), 3.43 (br, 1H), 3.32 – 3.14 (m, 2H), 2.96 – 2.89 (m, 1H), 1.79 – 1.69 (m, 1H), 1.69 – 1.58 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 202.2, 148.5, 145.9, 139.1, 134.2, 133.9, 129.5, 122.5, 121.4, 61.0, 48.2, 47.1, 45.3, 45.0. *exo isomer* : ¹H NMR (300 MHz, CDCl₃) δ 9.86 (d, J = 1.5 Hz, 1H), 7.9 – 7.34 (m, 3H) 6.29 (dd, J = 5.6, 2.5, 1H), 5.99 (dd, J = 5.6, 2.8 Hz, 1H), 3.81 (dd, J = 9.2, 4.6 Hz, 1H), 3.24 – 3.04 (m, 2H), 2.57 (d, J = 4.7 Hz, 1H), 1.74-1.63 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ 201.5, 148.1, 144.8, 137.1, 135.9, 134.3, 129.0, 122.5, 121.5, 59.6, 48.4, 47.5, 45.5, 44.7.

Endo and *exo* isomers of 3-(4-methoxyphenyl)bicyclo[2.2.1]hept-5-ene-2-carbaldehyde (Table 4, entry 4).

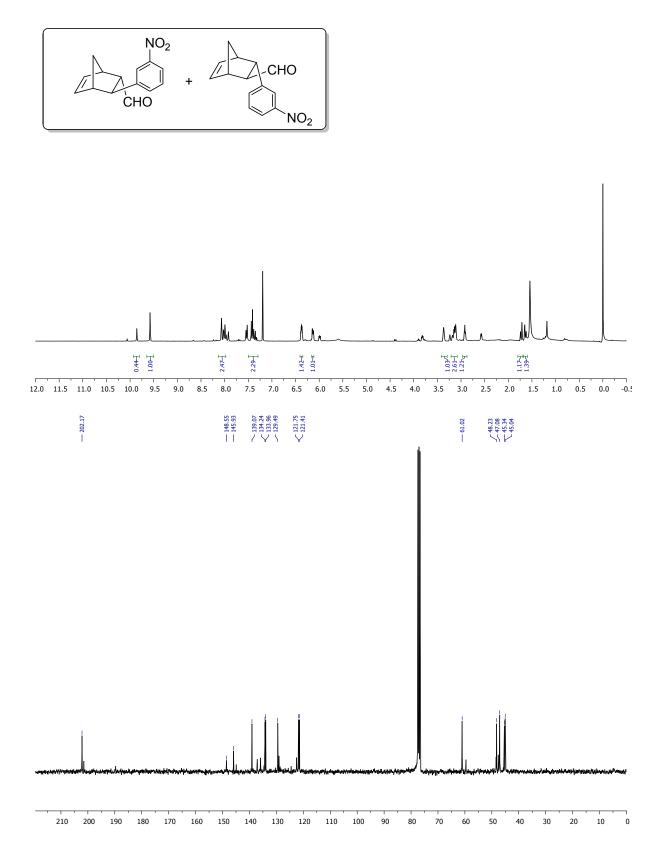
Prepared according to the general procedure described above from (E)-4methoxycinnamaldehyde (100 mg, 0.162mmol) and cyclopentadiene (122 mg, 3.7mmol) to afford the desired compound as a 14:86 mixture of *exo* and *endo* isomers (yellow oil, 60%); *endo isomer* : ¹H NMR (300 MHz, CDCl₃) δ 9.58 (d, J = 2.3 Hz, 1H), 7.11 (d, J = 8.6 Hz, 2H), 6.78 (d, J = 8.7 Hz, 2H), 6.34 (dd, J = 5.6, 3.3 Hz, 1H), 6.09 (dd, J = 5.6, 2.7 Hz, 1H), 3.72 (s, 3H), 3.24 (br, 1H), 2.99 (br, 1H), 2.95 (d, J = 4.8 Hz, 1H), 2.87 (dd, J = 6.5, 4.2 Hz, 1H), 1.72 (d, J = 8.7 Hz, 1H), 1.54 (dd, J = 8.7, 1.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 203.7, 158.0, 139.3, 135.6, 133.7, 128.3, 114.0, 60.9, 55.3, 48.7, 47.1, 45.1, 45.1 . *exo isomer* : ¹H NMR (300 MHz, CDCl₃) δ 9.91 (d, J = 2.1 Hz, 1H), 7.07 (d, J = 8.5 Hz, 2H), 6.79 (d, J = 8.7 Hz, 2H), 6.37 – 6.30 (m, 1H), 6.07 (dd, J = 2.8, 5.6, 1H), 3.87 (dd, J = 3.2, 5.2 Hz, 1H) 3.77 (s, 3H), 3.28 (s, 1H), 3.07 (d, J = 1.6 Hz, 1H), 2.31-2.36 (m, 1H), 1.67 – 1.72 (m, 1H), 1.52 – 1.57 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) 203.0 158.0, 136.6, 136.3, 134.6, 128.8, 113.6, 60.9, 55.3, 48.6, 47.1, 45.1, 44.8.


Endo and *exo* isomers of 3-phenylbicyclo[2.2.1]hept-5-en-2-yl)-1,3-dioxolane (*endo* 4 and *exo* 4):

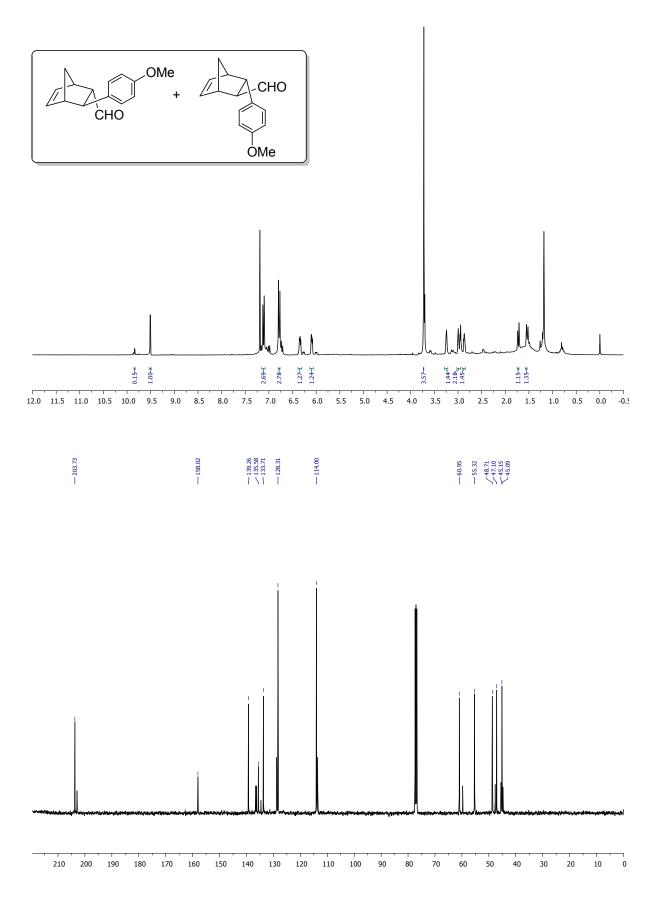

Prepared according to the general procedure described above with trans-cinnamaldehyde (100 mg, 0.75mmol), cyclopentadiene (150 mg, 2.27 mmol) in ethylene glycol(1M) to afford the glycol protected compound as a 16:84 mixture of *exo* and *endo* isomers (colorless oil, 75%). **endo isomer :** ¹H NMR (500 MHz, CDCl₃) δ 7.33 (d, *J* = 7.6 Hz, 2H), 7.21 (t, *J* = 7.7 Hz, 2H), 7.09 (dd, *J* = 13.1, 5.8 Hz, 1H), 6.27 (dd, *J* = 5.6, 3.2 Hz, 1H), 6.11 (dd, *J* = 5.6, 2.8 Hz, 1H), 4.38 (d, *J* = 8.1 Hz, 1H), 3.89 – 3.82 (m, 2H), 3.76 – 3.69 (m, 2H), 2.98 (s, 1H), 2.87 (d, *J* = 0.8 Hz, 1H), 2.48 (d, *J* = 4.4 Hz, 1H), 2.27 – 2.19 (m, 1H), 1.65 (d, *J* = 8.6 Hz, 1H), 1.44 (dd, *J* = 8.6, 1.6 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 144.9, 138.2, 134.9, 128.3, 127.8, 125.8, 108.6, 64.9, 64.8, 50.9, 49.1, 47.0, 46.6, 44.9. *exo isomer* : ¹H NMR (500 MHz, CDCl₃) δ 7.17 – 7.14 (m, 5H), 6.24 (dd, *J* = 5.6, 3.2 Hz, 1H), 5.87 (dd, *J* = 5.6, 2.8 Hz, 1H), 3.01 (d, *J* = 9.4 Hz, 1H), 2.98 (s, 1H), 1.88 – 1.83 (m, 1H), 1.71 (d, *J* = 8.4 Hz, 1H), 1.40 (dd, *J* = 8.5, 1.5 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 144.0, 137.4, 135.3, 128.0, 127.9, 125.8, 107.4, 65.1, 64.9, 49.9, 48.7, 47.2, 46.8, 45.1,

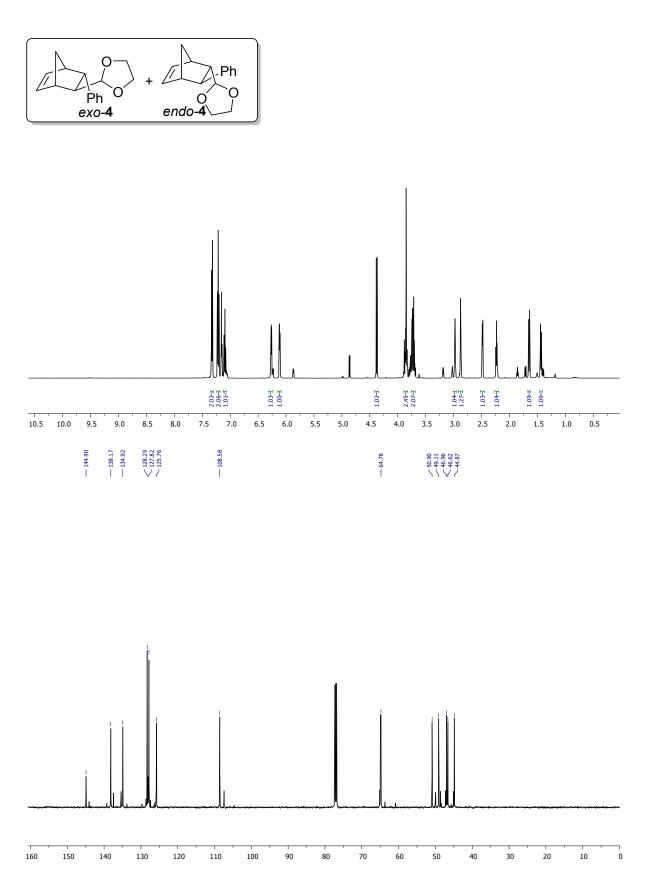

3. ¹H NMR, ¹³C NMR spectra:

¹H NMR and ¹³C NMR spectra of entry **1** Table **4**:



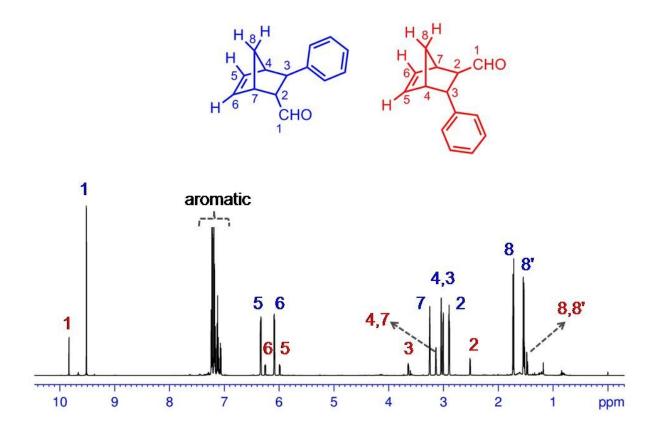
¹H NMR and ¹³C NMR spectra of entry **2** Table **4**:



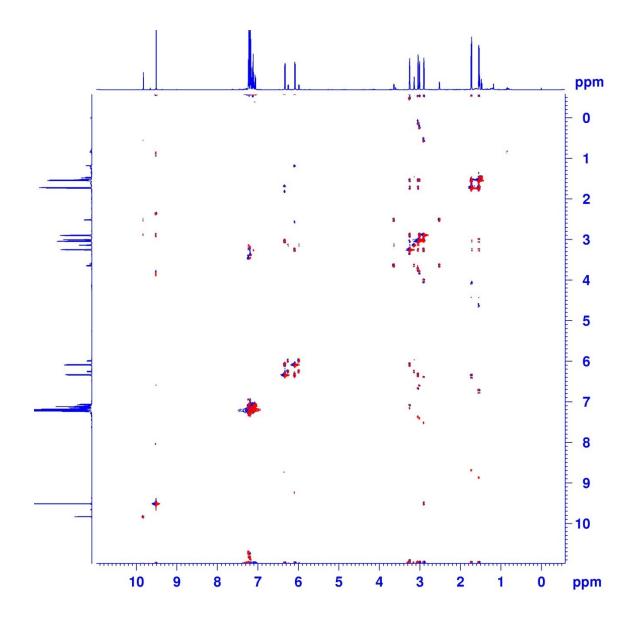

¹H NMR and ¹³C NMR spectra of entry **3** Table **4**:

¹H NMR and ¹³C NMR spectra of entry **4** Table **4**:

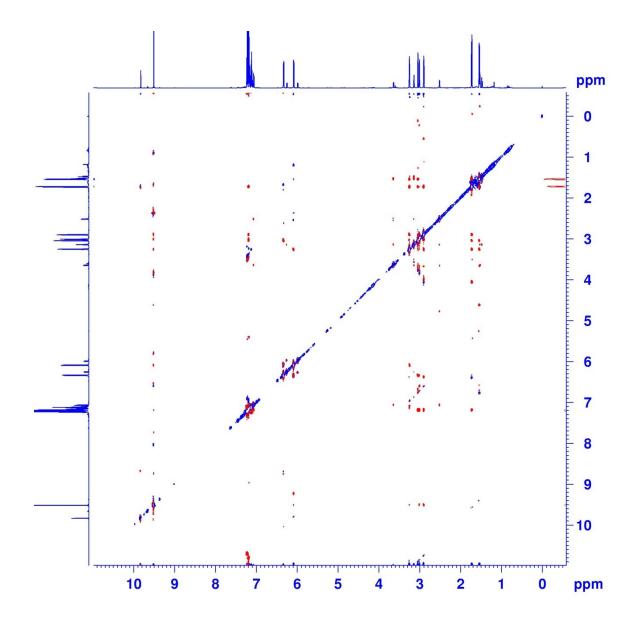
¹H NMR and ¹³C NMR spectra of entry **5** Table **3**:

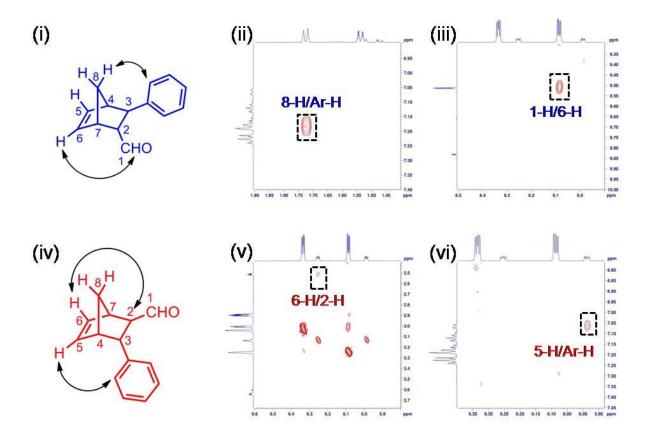


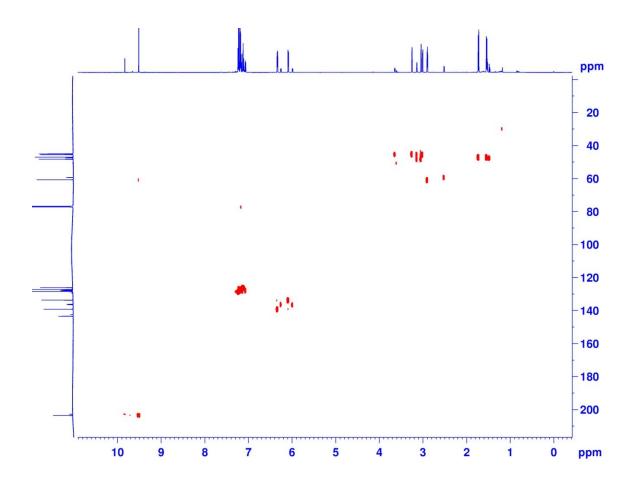
4. NOE spectra :


NOE spectra for entry 1 Table 4:

1D and 2D-NMR spectra were acquired on Bruker Avance 600 MHz (for ¹H) spectrometer and are referenced to δ 7.26 ppm and δ 77.00 ppm in CDCl₃ solvent for ¹H and ¹³C, respectively. The chemical shift values are presented in ppm (parts per million) units and *J*coupling constants are expressed in Hz. The mixture of *endo-3* and *exo-3* isomers is characterized by using 1D (¹H and ¹³C) and 2D- (DQFCOSY, NOESY, HSQC and HMBC) NMR experiments. The observed nOe cross peaks between 1-H(9.51 ppm)/6-H(6.09 ppm), 8-H(1.73 ppm)/Ar-H(7.18 ppm), 5-H(6.33 ppm)/3-H(3.01 ppm) and 8-H(1.73 ppm)/2-H(2.89 ppm) protons suggest that *endo-3* isomer is the major product in the adduct mixture. Furthermore, the scalar coupling constants ${}^{3}J_{2-H/7-H} = 3.51$ Hz and ${}^{3}J_{3-H/4-H} = 1.68$ Hz found in *endo-3* support the conclusion that the *endo* isomer is the major product of a adduct mixture. The configuration of the *exo-3* of a mixture was assigned by using the observed nOe cross peaks between 5-H(5.99 ppm)/Ar-H(7.06 ppm), 8-H(1.52 ppm)/3-H(3.64 ppm) and 2-H(2.51 ppm)/6-H(6.25 ppm) protons. **Table 1:** ¹H and ¹³C NMR spectral data of a mixture of **endo-3** and **exo-3** in CDCl₃ at 298 K (Avance 600 MHz).


Position	(endo-3)		(exo-3)	
	δ _{1H} (ppm)	δ _{13C} (ppm)	δ _{1H} (ppm)	δ _{13C} (ppm)
1	9.51 (d, <i>J</i> =2.23 Hz)	203.5	9.83 (d, <i>J</i> =2.0 Hz)	202.8
Aromatic	7.25-7.05 (m)	-	7.25-7.05 (m)	-
5	6.33 (dd, <i>J</i> =5.75, 3.21 Hz)	139.1	5.99 (dd, <i>J</i> =5.63, 2.86 Hz)	136.4
6	6.09 (dd, <i>J</i> =5.75, 2.85 Hz)	133.7	6.25 (dd, <i>J</i> =5.63, 3.2 Hz)	136.2
7	3.25 (m)	45.0	3.14 (m)	45.4
4	3.04 (m)	48.2	3.14 (m)	45.4
3	3.01 (dd, <i>J</i> =5.60, 1.68 Hz)	45.5	3.64 (dd, <i>J</i> =5.3, 3.4 Hz)	45.3
2	2.89 (ddd, <i>J</i> =5.60, 3.51, 2.23 Hz)	60.7	2.51 (dt, <i>J</i> =5.3, 1.8, 1.8 Hz)	59.4
8	1.73 (m)	47.0	1.52 (m)	47.5
8'	1.54 (m)	47.0	1.47 (m)	47.5


Figure 1: ¹H NMR spectrum of a mixture of **endo-3** and **exo-3** in CDCl₃ at 298 K (Avance 600 MHz).


Figure 2: DQFCOSY spectrum of a mixture of **endo-3** and **exo-3** in CDCl₃ at 298 K (Avance 600 MHz).

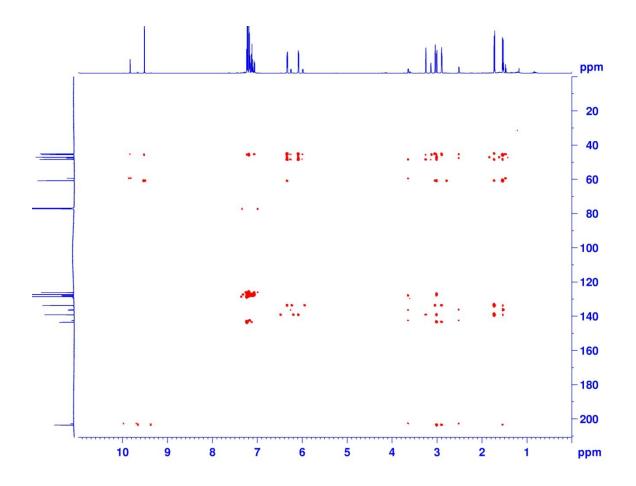
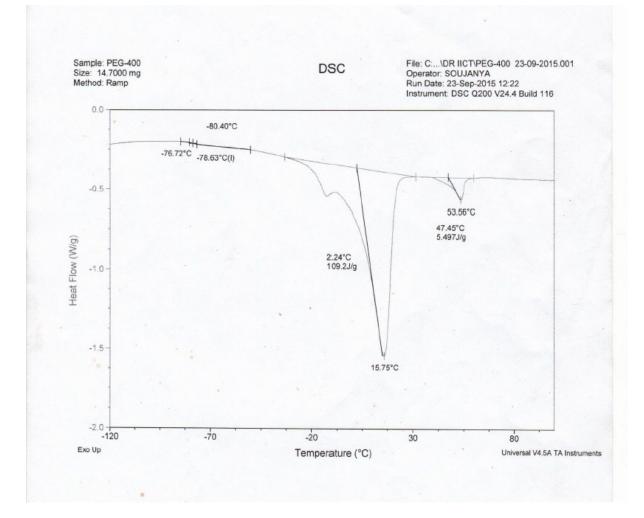
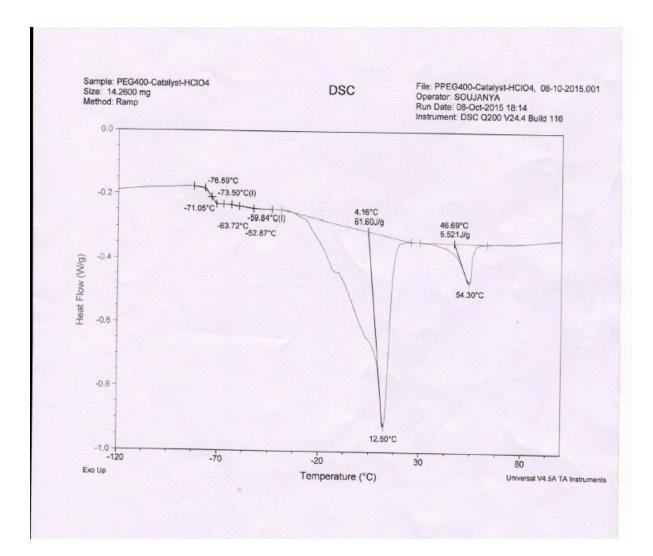
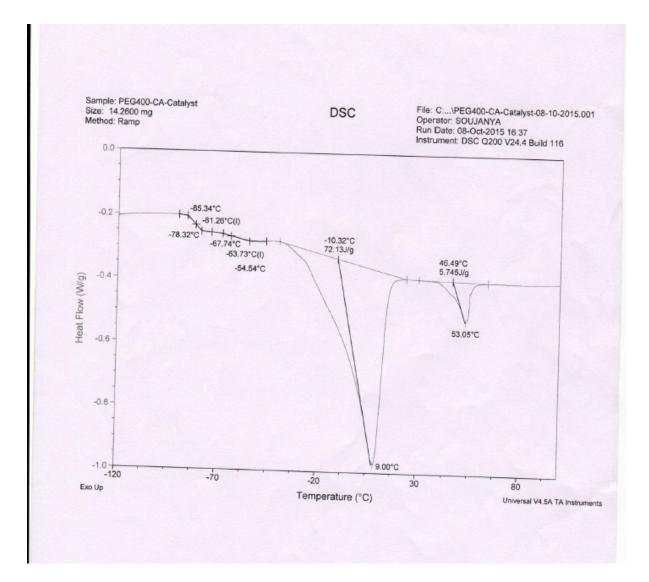

Figure 3: NOESY spectrum of a mixture of **endo-3** and **exo-3** in CDCl₃ at 298 K (Avance 600 MHz).

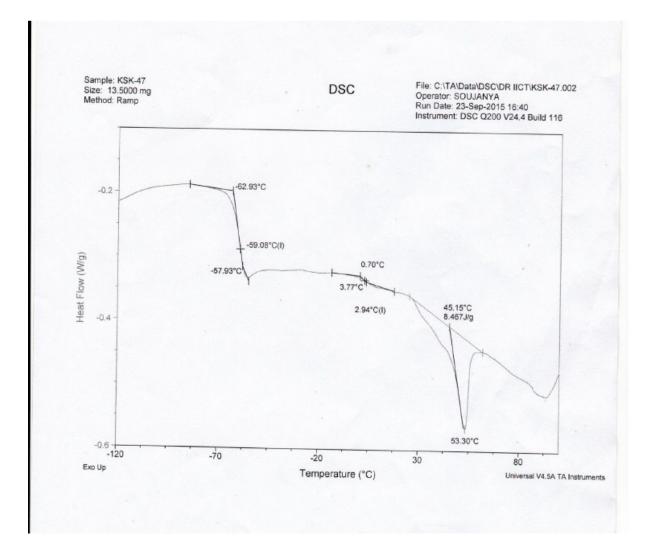
Figure 4: Schematic representation of the characteristic nOe correlations (shown as black arrows) in **endo-3** (i) and **exo-3** (iv). Expanded regions of NOESY spectrum of a mixture of **endo-3** and **exo-3** showing the characteristic nOe cross peaks (ii, iii, v and vi).

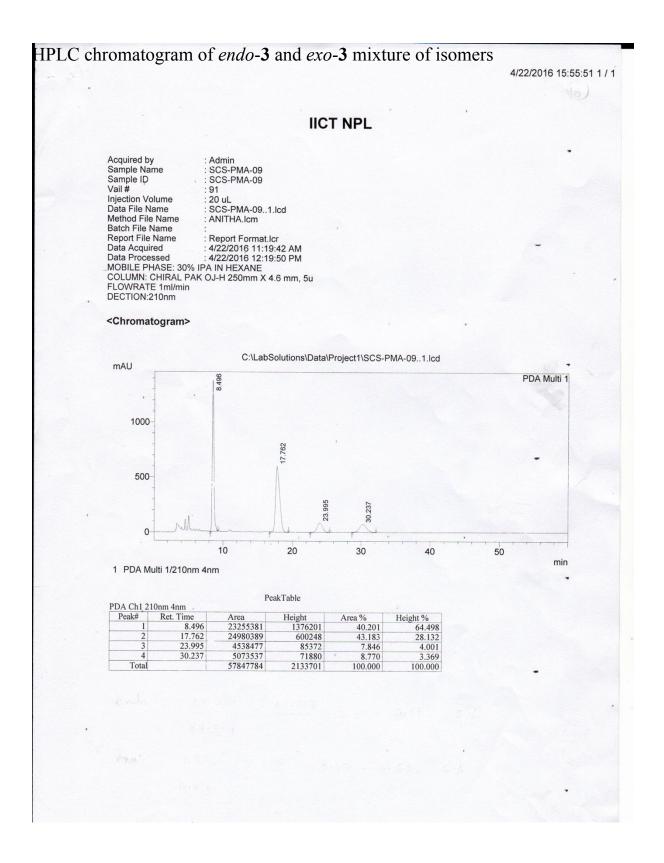

Figure 5: ¹³C-¹H HSQC spectrum of a mixture of **endo-3** and **exo-3** in CDCl₃ at 298 K (Avance 600 MHz).


Figure 6: ¹³C-¹H HMBC spectrum of a mixture of **endo-3** and **exo-3** in CDCl₃ at 298 K (Avance 600 MHz).

5. DSC Data :


1. DSC data for PEG-400


2. DSC data for PEG-400, Catalyst B, HClO₄


3. DSC data for PEG-400, Catalyst B, Cinnamaldehyde

4. DSC data for PEG-400, Catalyst B, Cinnamaldehyde, Cyclopentadiene, HClO₄

6. HPLC Data.

HPLC chromatogram of exo-3 isomer

4/5/2016 17:14:06 1 / 1 **IICT NPL** Acquired by Sample Name Sample ID Vail # Admin PMA-1 PMA-1 : 1 : 50 uL : PMA-1..1.Icd : SCS-PMA.Icm Vail # :1 Injection Volume :50 uL . Data File Name : PMA-1..1.Icd Method File Name : SCS-PMA.Icm Batch File Name : Report Format.Icr Data Acquired :4/5/2016 3:44:06 PM Data Processed :4/5/2016 4:36:14 PM _MOBILE PHASE: 30% IPA IN HEXANE COLUMN: CHIRAL PAK OJ-H 250mm X 4.6 mm, 5u FLOWRATE:1ml/min DECTION:210nm DECTION:210nm <Chromatogram> C:\LabSolutions\Data\Project1\PMA-1..1.lcd mAU 20 PDA Multi 1 24.096 30.412 15 10 5 0 40 50 10 20 30 min 1 PDA Multi 1/210nm 4nm PeakTable PDA Ch1 210nm 4nm Height % 56.006 43.994 100.000 Area % 49.147 -50.853 100.000 Area 755850 782078 1537928 Height - 16180 12710 28890 Ret. Time 24.096 30.412 Peak# Total

HPLC chromatogram of endo-3 isomer