Supporting Information

Thioxanthone based one-component polymerizable visible light photoinitiator for free radical polymerization

Qingqing Wu, Xiaoling Wang, Ying Xiong*, Jianjing Yang and Hongding

Tang*

College of Chemistry and Molecular Sciences, Wuhan University, Wuhan,

430072, P. R. China

Scheme S1 Synthesis of TX-PA and TX-Ac

Experimental section

Materials and instrumentation

2-Benzyl(methyl)amino-9H-thioxanthen-9-one (TX-B), ¹ 2-methylamino-9Hthioxanthen-9-one¹ and 4-(hydroxymethyl)phenyl benzoate² were prepared following the literature methods. *N*, *N*-Dimethylformamide (DMF) and methylene chloride (CH₂Cl₂) were dried and purified according to the standard laboratory methods. 1, 6-hexanedioldiacrylate (HDDA, 90%) was obtained from Aladdin. All reagents and solvents were also obtained from Aladdin and used as received without further purification. ¹H (300 MHz) and ¹³C (75 MHz) NMR spectra were determined at room temperature on a VARIAN Mercury 300 spectrometer of the Spectropole. Mass spectrometry was carried out using a Varian 320-MS triple quadrupole mass spectrometer operated in the electrospray ionization (ESI) modes.

Synthesis of 4-(chloromethyl)phenyl benzoate

Thionyl chloride (7.25 mL) was added dropwisely to the solution of 4-(hydroxymethyl)phenyl benzoate (11.40 g, 50 mmol) in anhydrous CH_2Cl_2 (100 mL). Then, the solution was stirred for an additional hour at room temperature and the substances with low boiling point were removed under reduced pressure. Two milliliter of CH_2Cl_2 was added into the residue. The solution was poured into 50 mL of petroleum ether. The precipitate was filtered off and dried under vacuum to give a white powder (11.07 g, 90%). ¹H NMR (CDCl₃, 300 MHz) δ ppm: 4.62 (s, 2H, -CH₂), 7.19-7.25 (m, 2H, Ar-H), 7.40-7.55 (m, 4H, Ar-H), 7.61-7.68 (m, 1H, Ar-H), 8.20 (d, 2H, Ar-H, J = 7.2 Hz). ¹³C NMR (CDCl₃, 75 MHz) δ ppm: 165.0 (C=O), 150.8 (ArC), 135.0 (ArC), 133.7 (ArCH), 130.2 (ArC), 129.8 (ArCH), 129.3 (ArCH), 128.6 (ArCH), 122.0 (ArCH), 45.6 (-CH₂).

Synthesis of 4-((methyl(9-oxo-9H-thioxanthen-2-yl)amino)methyl)phenyl benzoate

A mixture of 2-methylamino-9H-thioxanthen-9-one (7.32 g, 30.0 mmol), sodium iodide (0.15g, 1.0 mmol), 4-(chloromethyl)phenyl benzoate (7.75 g, 31.5 mmol), K₂CO₃ (8.28 g, 60.0 mmol) and 100 mL of anhydrous DMF was stirred at 50 °C until the absence of 2-methylamino-9H-thioxanthen-9-one which was monitored by TLC. And then, the mixture was cooled down and the yellow precipitate was collected by filtration. The solid was dissolved in 20 mL of CH₂Cl₂, and then the solution was added into 200 mL of petroleum ether which afforded a yellow precipitate. The solid was collected by filtration and dried under high vacuum to give a yellow powder (12.45 g, 92%). ¹H NMR (CDCl₃, 300 MHz) δ ppm: 3.18 (s, 3H, -NCH₃), 4.67 (s, 2H, -NCH₂), 7.18 (d, 3H, Ar-H, J = 7.8 Hz), 7.31 (d, 2H, Ar-H, J = 8.1 Hz), 7.46 (d, 2H, Ar-H, J = 4.2 Hz), 7.51 (t, 2H, Ar-H, J = 8.1 Hz), 7.56-7.65 (m, 3H, Ar-H), 8.00 (d, 1H, Ar-H, J = 2.4 Hz), 8.19 (d, 2H, Ar-H, J = 8.4 Hz), 8.63 (d, 1H, Ar-H, J = 8.1 ¹³C NMR (CDCl₃, 75 MHz) δ ppm: 180.0 (C=O), 165.2 (COO), 149.9 (ArC), Hz). 148.1 (ArC), 137.7 (ArC), 135.7 (ArC), 133.6 (ArCH), 131.6 (ArCH), 130.1 (ArCH), 129.8 (ArC), 129.4 (ArCH), 128.5 (ArC), 127.7 (ArCH), 126.9 (ArC), 125.9 (ArCH), 125.6 (ArCH), 124.3 (ArCH), 121.9 (ArCH), 118.8 (ArCH), 110.4 (ArCH), 55.9 Synthesis of 2-[(4-hydroxybenzyl)(methyl)amino]-9H-thioxanthen-9-one (TX-HB) A mixture of 4-((methyl(9-oxo-9H-thioxanthen-2-yl)amino)methyl)phenyl benzoate (13.53 g, 30.0 mmol), 100 mL of methanol, and 0.10 g anhydrous K₂CO₃ was stirred under reflux conditions for 2 h. Then it was cooled down to room temperature and After the methanol was stripped off under a then was filtered to remove solids. reduced pressure, 5 mL of THF was added to the residue. Then the solution was added into 200 mL of petroleum ether which afforded a red precipitate. The solid was collected by filtration and dried under high vacuum to give a red powder (7.33 g, 70%), m.p. 182-184 °C. ¹H NMR (DMSO-d6, 300 MHz) δ ppm: 3.05 (s, 3H, -NCH₃), 4.52 (s, 2H, -NCH₂), 6.72 (d, 2H, Ar-H, J = 8.1 Hz), 7.03 (d, 2H, Ar-H, J = 8.1 Hz), 7.24-7.27 (m, 1H, Ar-H), 7.45-7.54 (m, 2H, Ar-H), 7.64-7.71 (m, 3H, Ar-H), 8.42 (d, 1H, Ar-H, J = 7.5 Hz), 9.33 (s, 1H, -OH). 13 C NMR (DMSO-d6, 75 MHz) δ ppm: 184.1 (C=O), 161.8 (ArC), 153.3 (ArC), 142.4 (ArC), 137.6 (ArCH), 134.5 (ArCH), 133.6 (ArC), 133.4 (ArC), 133.3 (ArCH), 132.6 (ArC), 131.8 (ArCH), 131.4 (ArC), 128.1 (ArCH), 124.7 (ArCH), 120.8 (ArCH), 114.6 (ArCH), 60.2 (-NCH₂), 43.9 (-NCH₃). MS, m/z (ESI) 348.1 ([M+H]⁺, 100%).

Synthesis of 4-((methyl(9-oxo-9H-thioxanthen-2-yl)amino)methyl)phenyl acrylate (TX-PA)

TX-HB (0.69 g, 2.0 mmol), triethylamine (0.28 mL, 4.0 mmol), and 50 mL of CH₂Cl₂

were added into a 250 mL of three-necked round bottom flask fitted with a thermometer and a pressure-equalized funnel. Under cooling (0-5 °C), the solution of acryloyl chloride (0.34 mL, 4.0 mmol) and 10 mL of CH₂Cl₂ was added dropwise into the flask within 1 h. The mixture was stirred at room temperature for another hour. Then, the low-boiling point substances were stripped off under vacuum. After that, 50 mL of CH_2Cl_2 was added. The mixture was washed with water, and dried overnight with anhydrous sodium sulfate. After evaporated the low-boiling point substances, additional 2 mL of CH₂Cl₂ was added and the mixture was dropped into 50 mL of petroleum ether. After the precipitates were filtered off and dried under vacuum, 0.64 g of yellow product was collected with 80% yield, m.p. 102-104 ¹H NMR (CDCl₃, 300 MHz) δ ppm: 3.16 (s, 3H, -NCH₃), 4.65 (s, 2H, -NCH₂), °C. 6.00-6.05 (m, 1H, -CH=CH₂), 6.27-6.42 (m, 1H, -CH=CH₂), 6.58-6.64 (m, 1H, -CH=CH₂), 7.09-7.15 (m, 3H, Ar-H), 7.26-7.29 (m, 2H, Ar-H), 7.41-7.48 (m, 2H, Ar-H), 7.57-7.59 (m, 2H, Ar-H), 7.97 (d, 1H, Ar-H, J = 2.7 Hz), 8.64 (d, 1H, Ar-H, J = ¹³C NMR (CDCl₃, 75 MHz) δ ppm: 179.9 (C=O), 164.5 (OC=O), 149.6 8.1 Hz). (ArC), 148.1 (ArC), 137.7 (ArC), 135.7 (ArC), 132.5 (-CH=CH₂), 131.6 (ArCH), 129.8 (ArCH), 128.7 (ArCH), 127.8 (ArC), 127.6 (-CH=CH₂), 126.9 (ArC), 125.9 (ArCH), 125.5 (ArC), 124.3 (ArCH), 121.7 (ArCH), 118.8 (ArCH), 110.5 (ArCH), 55.8 (-NCH₂), 38.7 (-NCH₃). MS, m/z (ESI) 402.0 ([M+H]⁺, 100%).

Synthesis of 4-((methyl(9-oxo-9H-thioxanthen-2-yl)amino)methyl)phenyl acetate (TX-Ac) Following the method of 4-((methyl(9-oxo-9H-thioxanthen-2yl)amino)methyl)phenyl acrylate was synthesized. ¹H NMR (CDCl₃, 300 MHz) δ ppm: 2.29 (s, 3H, -COCH₃), 3.15 (s, 3H, -NCH₃), 4.64 (s, 2H, -CH₂), 7.04 (d, 2H, Ar-H, J = 7.8 Hz), 7.11 (d, 1H, Ar-H, J = 7.8 Hz), 7.24 (m, 1H, Ar-H), 7.43 (d, 2H, Ar-H, J = 8.1 Hz), 7.57 (s, 2H, Ar-H), 7.95 (s, 1H, Ar-H), 8.62 (d, 1H, Ar-H, J = 8.1 Hz). ¹³C NMR (CDCl₃, 75 MHz) δ ppm: 179.8 (C=O), 169.4 (OC=O), 149.5 (ArC), 148.0 (ArC), 137.6 (ArC), 135.6 (ArC), 131.5 (ArCH), 129.6 (ArCH), 128.5 (ArCH), 127.5 (ArC), 126.8 (ArC), 125.8 (ArCH), 125.4 (ArCH), 124.2 (ArCH), 121.7 (ArCH), 118.6 (ArCH), 110.2 (ArCH), 55.7 (-NCH₂), 38.6 (-NCH₃), 21.0 (-CH₃). MS, m/z (ESI) 390.0 ([M+H]⁺, 100%).

Fig. S1 ¹H NMR spectrum of TX-B and TX-PA in CDCl₃.

Fig. S2 ¹H NMR spectrum of TX-Ac in CDCl₃.

Fig. S3 ¹³C NMR of TX-B and TX-PA in CDCl₃.

Fig. S4 ¹³C NMR of TX-Ac in CDCl₃.

ESI-MS Analysis

Fig. S5 Mass spectrometry of TX-HB.

Fig. S6 Mass spectrometry of TX-PA.

Fig. S7 Mass spectrometry of TX-Ac.

Fig. S8 UV-vis absorption spectra of (1) TX-B and (2) TX-PA in THF solution $[2 \times 10^{-4} \text{ mol } \text{L}^{-1}]$.

Fig. S9 Fluorescence excitation and emission spectra of TX-B and TX-PA in THF solution $[8 \times 10^{-6} \text{ mol } \text{L}^{-1}]$.

Fig. S10 The fluorescence emission of TX-PA in THF solution $[8 \times 10^{-6} \text{ mol } \text{L}^{-1}]$ with different concentration of MDEA.

Fig. S11 The fluorescence emission of TX-PA in THF solution $[8 \times 10^{-6} \text{ mol } \text{L}^{-1}]$ with different concentration of DMA.

Fig. S12 Stern-Volmer plot of the quenching of (1) TX-B and (2) TX-PA $[8 \times 10^{-6} \text{ mol } \text{L}^{-1}]$ by DMA in THF.

Fig. S13 UV-vis absorption spectra of (1) TX-B and (2) TX-PA in acetone solution.

Notes and references

- 1 Q. Wu, Y. Xiong, Q. Liang and H. Tang, *RSC Adv.*, 2014, **4**, 52324-52331.
- 2 J. S. Zakhari, I. Kinoyama, M. S. Hixon, A. D. Mola, D. Globisch and K. D. Janda, Bioorg. Med.

Chem., 2011, 19, 6203-6209.