Diazapentacene Derivatives: Synthesis, Properties, and Structures.

John J. Hoff[†], Lei Zhu[‡], Yutong Dong[†], Thomas Albers[†], Peter J. Steel[§], Xianwei Cui[‡], Ying Wen[‡], Iryna Lebedyeva[†], and Shaobin Miao^{*†}

[†] Department of Chemistry and Physics, Augusta University, 1120 15th St., Augusta, GA 30912, USA

* Corresponding author. *E-mail: smiao@augusta.edu*

⁺ College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China

[§] Chemistry Department, University of Canterbury, Christchurch, 8140, New Zealand

Synthesis

All reagents and solvents were obtained from commercial suppliers and used without further purification except for tetrahydrofuran (THF) that had been distilled over sodium/benzophenone. 1,4-*Bis*((triisopropylsilyl)ethynyl)anthracene-2,3-diamine (1) ^{1,2} was synthesized according to the literature. ¹H-NMR (300 MHz) and ¹³C-NMR (75 MHz) spectra were recorded on a Bruker DRX-300 spectrometer at room temperature. Infrared spectra were recorded on a Thermo Scientific Nicolet iS5 FT-IR spectrometer with ATR accessory. Absorption spectra were recorded on a Hitachi U-4100. Emission spectra were recorded on a Hitachi F-7000 fluorescence spectrophotometer. High resolution mass spectrometry were recorded on a MAT 95 XP mass spectrometer. Melting points were determined with a melting point apparatus MEL-TEMP (Thermo Scientific) and are uncorrected. X-ray intensity data were collected at 120(10) K using a SuperNova, Dual, Cu at zero, Atlas diffractometer (Cu Ka radiation, $\lambda = 1.54184$ Å). Cyclic voltammetry (CV) measurements were carried out on a CHI 760E Electrochemical workstation (Shanghai, China).

Synthesis of **2**: To the mixture of **1** (0.500 g, 0.879 mmol) in CH₃COOH (20.0 mL) was added phenanthrene-9,10-dione (0.201 g, 0.965 mmol, 1.10 equivalent) at r.t. The resultant mixture was

heated at 100 °C for 2.5 hours. The mixture was cooled down to r.t. and was added to 200 mL of H₂O. The mixture was then filtered and the precipitate was washed with H₂O (3x200mL), CH₃OH (3x100mL), and dried. The dark-green product **2** (0.321g, 49%) was obtained after column chromatography on silica gel using a Hex:CH₂Cl₂ (5:1, v/v) solvent mixture. m. p. = 342-344 °C. IR (ATR): 2939, 2889, 2862, 2134, 1602, 1449, 1354 cm⁻¹. ¹H-NMR (300 MHz, CDCl₃): δ = 9.59-9.56 (dd, *J* = 8.0 Hz, *J* = 1.4 Hz, 2H), 9.49 (s, 2H), 8.50-8.48 (d, *J* = 8.0 Hz, 2H), 8.10-8.07 (dd, *J* = 6.5 Hz, *J* = 3.2 Hz, 2H), 7.81-7.78 (dt, *J* = 7.2 Hz, *J* = 1.4 Hz, 2H), 7.72-7.69 (t, *J* = 7.2 Hz, 2H), 7.56-7.53 (dd, *J* = 6.6 Hz, *J* = 3.2 Hz, 2H), 1.45-1.42 ppm (m, 42H). ¹³C-NMR (75 MHz, CDCl₃): δ = 144.21, 139.97, 132.81, 132.72, 132.21, 131.18, 130.59, 128.66, 127.96, 127.44, 126.78, 126.58, 123.01, 120.44, 107.92, 103.68, 19.01, 11.80 ppm. HRMS (EI, 70ev): m/z [M]⁺ calcd for C₅₀H₅₆N₂Si₂: 740.3977u, found: 740.3960u.

Figure S1. ¹H-NMR (300 MHz) spectrum of **2** in CDCl₃ at 300 K.

Figure S2. ¹³C-NMR (75 MHz) spectrum of 2 in CDCl₃ at 300 K.

Synthesis of **3**: To the mixture of **1** (0.500 g, 0.879 mmol) in CH₃COOH (25.0 mL) was added 1,10-phenanthroline-5,6-dione (0.203 g, 0.966 mmol, 1.10 equivalent) at r.t. The resultant mixture was heated at 100 °C for 2.5 hours. The mixture was cooled down to r.t. and was added to 200 mL of H₂O. The mixture was then filtered and the precipitate was washed with H₂O (3x200mL), CH₃OH (3x100mL), and dried. The dark-green product **3** (0.430g, 66%) was obtained after column chromatography on silica gel using a CH₂Cl₂:ethyl acetate (1:1, v/v) solvent mixture. m. p. = 350-352 °C. IR (ATR): 2941, 2863, 2128, 1587, 1460, 1354 cm⁻¹. ¹H-NMR (300 MHz, CDCl₃): δ = 9.78-9.75 (dd, *J* = 8.1 Hz, *J* = 1.8 Hz, 2H), 9.51 (s, 2H), 9.26-9.24 (dd, *J* = 4.5 Hz, *J* = 1.8 Hz, 2H), 8.11-8.07 (dd, *J* = 6.5 Hz, *J* = 3.3 Hz, 2H), 7.77-7.73 (dd, *J* = 8.1 Hz, *J* = 4.5 Hz, 2H), 7.58-7.55 (dd, *J* = 6.7 Hz, *J* = 3.3 Hz, 2H), 1.44-1.42 ppm (m, 42H). ¹³C-NMR (75 MHz, CDCl₃): δ = 153.07, 149.37, 142.70, 139.76, 134.47, 133.04, 132.40, 128.67, 128.00, 126.99, 124.20, 120.98, 108.81, 103.31, 19.00, 11.75 ppm. HRMS (EI, 70ev): m/z [M]⁺ calcd for C₄₈H₅₄N₄Si₂: 742.3882u, found: 742.3895u.

Figure S3. ¹H-NMR (300 MHz) spectrum of **3** in CDCl₃ at 300 K.

Figure S4. ¹³C-NMR (75 MHz) spectrum of **3** in CDCl₃ at 300 K.

Figure S5. Cyclic voltammetry of **2** and **3** (0.4×10^{-3} M) on a glassy carbon electrode in CH₂Cl₂ + 0.1 M ^{*n*}Bu₄NBF₄ at room temperature, scan at v = 200 mV/s. A glassy carbon electrode as the working electrode, a Pt wire as a counter electrode and a saturated calomel electrode (SCE) as a reference.

Figure S6. Normalized UV-vis absorption spectra of 2 in different solvents.

Figure S7. Normalized emission spectra of **2** in different solvents (excitation wavelength: 590nm).

Figure S8. Normalized UV-vis absorption spectra of **3** in different solvents.

Figure S9. Normalized emission spectra of 3 in different solvents (excitation wavelength: 600nm).

References:

- 1. Appleton, A. L.; Brombosz, S. M.; Bralow, S.; Sears, J. S.; Bredas, J.-L.; Marder, S. R.; Bunz, U. H. F. *Nat. Commun.* **2010**, *1*, 91.
- 2. Appleton, A. L.; Miao, S.; Brombosz, S. M.; Berger, N. J.; Barlow, S.; Marder, S. R.; Lawrence, B. M.; Hardcastle, K. I.; Bunz, U. H. F. *Org. Lett.* **2009**, *11*, 5222-5225.