Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information for

Laser-induced fabrication of highly branched Au@TiO₂ nano-dendrites with excellent near-infrared absorption properties

Ziyu Wang, Hua Zhang, Linlin Xu, Ziwei Wang, Dameng Wang, Xiangdong Liu and Ming Chen*

School of Physics, Shandong University, Jinan 250100, China *chenming@sdu.edu.cn

Fig. S1 The PH value of the TiO₂ solution versus the UV-laser irradiation time.

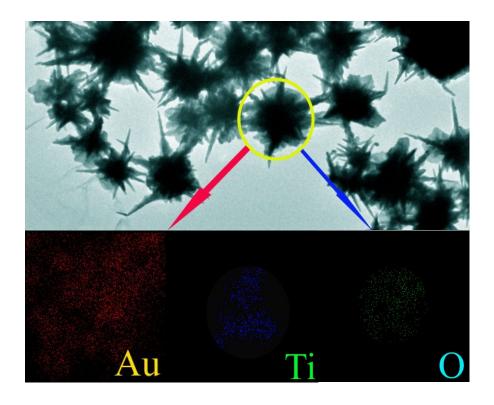


Fig. S2 The typical TEM images of the $Au@TiO_2$ nano-dendrites by using $100\mu L$ HAuCl₄. The precursors were modified by UV-laser irradiation for 120 min. The below pictures show the elemental mapping images of the representative $Au@TiO_2$ nano-dendrites.

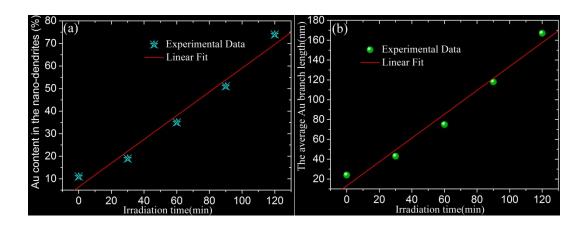


Fig. S3 The structure-evolutions of $Au@TiO_2$ nan-dendrites obtained by using $100\mu L$ HAuCl₄ in each experiment versus UV-laser irradiation time : (a) the average Au branch length and (b) the Au content in the $Au@TiO_2$ nan-dendrites.