Supplementary Content

Colorimetric and ON-OFF-ON fluorescent chemosensor for the sequential detection of Cu(II) and Cysteine and its application in imaging of living cells

Yadvendra Singh, Shiva Arun, Brijesh Kumar Singh, Pradip Kumar Dutta* and Tamal Ghosh*

Department of Chemistry, Motilal Nehru National Institute of Technology, Allahabad, Pin-211004, India. Equation for calculation of binding constant for 1:1 stoichiometry using UV-Visible spectral data

$$\frac{\Delta A}{b} = \frac{Q_t K_a \Delta \varepsilon[L]}{1 + K[L]} \tag{eq 1}$$

where, ΔA refers to the change in absorbance from initial value at the required wavelength, *b* is cuvette path length (in cm), Q_t is total concentration of sensor, K_a is the apparent binding constant, $\Delta \varepsilon$ is the change in extinction coefficient between free and bound sensor and [*L*] is the concentration of Cu²⁺ ion or Cysteine.

Equation for calculation of binding constant for 1:1 stoichiometry using Fluorescence spectral data

$$\frac{I_0}{I} = 1 + K[L] \tag{eq 2}$$

.

where, I_0 is the fluorescence intensity of the sensor **1** in the absence of Cu^{2+} ion, I is fluorescence intensity due to **1**-Cu(II) upon addition of Cu^{2+} ion, *K* is the equilibrium constant and [L] is the concentration of Cu^{2+} ion.

$$\frac{I}{I_0} = \frac{1 + {\binom{k_f}{k_s}}K[L]}{1 + K[L]}$$
(eq 3)

where, I_0 is the fluorescence intensity of the 1-Cu(II) in the absence of Cysteine, I is fluorescence intensity due to free 1 upon addition of Cysteine, k_f is proportionality constant of the free sensor 1, k_s is proportionality constant of the 1-Cu(II), K is the equilibrium constant and [L] is the concentration of Cysteine.

Calculation method for detection limit:

To determine the detection limit, UV-Visible titration of **1** with Cu^{2+} is carried out by adding aliquots of micromolar concentration of Cu^{2+} . The lowest concentration of Cu^{2+} that caused a sharp change in the absorbance is recorded as experimental and real detection limit.

Inset of Fig. 1. Scatter plot of the experimental data (change in absorbance for 1 at 415 nm $(\Delta A_{415 \text{ nm}})$ vs. [Cu²⁺]), obtained from the UV-Visible spectral change for 1 upon addition of Cu²⁺ in DMSO/H₂O (3:7 v/v) at 298 K. [1] = 1.3×10^{-5} M, [Cu²⁺] = $(0 - 1.33) \times 10^{-5}$ M.

Fig. S1. FTIR Spectrum of 1.

Fig. S2. ¹H NMR of **1** (400 MHz, DMSO-*d*₆).

Fig. S3. ESI-MS of 1.

Fig. S4. The stoichiometric analysis of 1 with Cu^{2+} by Job's plot; ([1] + [Cu^{2+}]) = 2 × 10⁻⁵ M in DMSO/H₂O (3:7 v/v).

Fig. S5. UV-Visible spectrum of 1 (1.9×10^{-5} M) upon addition of different cations (2 equivalents) in DMSO/H₂O (3:7 v/v).

Fig. S6. (a) Absorption spectral changes observed for 1 (1.9×10^{-5} M) with Cu²⁺ (2 equivalents) in the presence of 2 equivalents of other cations in DMSO/H₂O (3:7 v/v). (b) Color changes observed for 1 (1.9×10^{-5} M) with Cu²⁺ (2 equivalents) in the presence of 2 equivalents of other cations in DMSO/H₂O (3:7 v/v).

Fig. S7. UV-Visible spectral changes observed for 1 (1.3×10^{-5} M) with Cu²⁺ (2 equivalents) in the presence of 2 equivalents of EDTA in DMSO/H₂O (3:7 v/v).

Fig. S8. Absorption spectral changes of 1-Cu(II) upon addition of 30 equivalents of different amino acids in DMSO/H₂O (3:7 v/v) solution. [1-Cu(II)] = 6.2×10^{-6} M.

Fig. S9. The stoichiometric analysis of 1-Cu(II) with Cys by Job's plot; $([1-Cu(II)] + [Cys]) = 2 \times 10^{-5}$ M in DMSO/H₂O (3:7 v/v).

Fig. S10. (a) Absorption spectral changes of competitive selectivity of 1-Cu(II), $[1-Cu(II)] = 6.2 \times 10^{-6}$ M, towards Cys (30 equivalents) in the presence of other amino acids (30 equivalents) in DMSO/H₂O (3:7 v/v) solution. (b) Colour changes of competitive selectivity of 1-Cu(II), $[1-Cu(II)] = 6.2 \times 10^{-6}$ M, towards Cys (30 equivalents) in the presence of other amino acids (30 equivalents) in DMSO/H₂O (3:7 v/v) solution.