Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

**Supporting Information for** 

## Ultrathin BiVO<sub>4</sub> Nanobelts: Controllable Synthesis and Improved

## **Photocatalytic Oxidation of Water**

Zhengbo Jiao,<sup>*a,b,\**</sup> Hongchao Yu,<sup>*a*</sup> Xuesen Wang,<sup>*b*</sup> and Yingpu Bi<sup>*a,\**</sup>

<sup>a</sup>State Key Laboratory for Oxo Synthesis & Selective Oxidation (OSSO), and National Engineering Research

Center for Fine Petrochemical Intermediates (NERC-FPI), Lanzhou Institute of Chemical Physics, CAS, Lanzhou 730000, China.

750000, Clillia.

<sup>b</sup>Department of Physics, National University of Singapore, 117542 Singapore. \*To whom correspondence should be addressed.

Email: jiaozhb@licp.cas.cn; yingpubi@licp.cas.cn

## **Experimental Section**

**Chemical Reagents and Instruments:** Ammonium metavanadate ( $NH_4VO_3$ ), bismuth nitrate ( $Bi(NO_3)$ ), ammonia ( $NH_3 \cdot H_2O$ ), nitric acid ( $HNO_3$ ), methanol ( $CH_3OH$ ), silver nitrate ( $AgNO_3$ ) were purchased from Sinopharm Chemical Regent Co., Ltd. Deionized water (18 M $\Omega$ , Molecular) was used for all solution preparations.

The morphology and size of the as-prepared products were characterized by using a fieldemission scanning electron microscope (JSM-6701F, JEOL). The X-ray diffraction spectra (XRD) measurements were performed on a PANalytical X'Pert PRO instrument using Cu K $\alpha$  radiation (40 kV). The XRD patterns were recorded from 10° to 90° with a scanning rate of 0.067 °/s. UVvisible diffuse reflectance spectra were taken on a UV-2550 (Shimadzu) spectrometer by using BaSO<sub>4</sub> as the reference. HRTEM imaging was carried out using an FEI Tecnai TF20 microscope operated at 200 kV.

**Preparation of BiVO<sub>4</sub> nanobelts:** Firstly, 0.036 g NH<sub>4</sub>VO<sub>3</sub> was dissolved in 1 M ammonia solution (solution A) because it is slight soluble in pure water. 0.03 g BiNO<sub>3</sub> was dissolved into 1 M dilute nitric acid (solution B) since it could hydrolyze to BiONO<sub>3</sub> precipitates in aqueous solution. Secondly, solution A was added into solution B drop by drop. Along with the consumption of ammonia and nitric acid, NH<sub>4</sub>VO<sub>3</sub> and BiNO<sub>3</sub> would react and produce tetragonal BiVO<sub>4</sub> nanoparticles. The PH is measured to be 5.1 after the full mixture of solution A with solution B. At last, the solution was transferred into a Teflon-lined stainless steel autoclave, which was kept at 180 °C for one day. After the hydrothermal reaction, the BiVO<sub>4</sub> nanobelts were obtained finally.

**Preparation of BiVO<sub>4</sub> nanoparticles:** The pure BiVO<sub>4</sub> nanoparticles was synthesized via a typical procedure, 1 mmol of Bi(NO<sub>3</sub>)<sub>3</sub> • 5H<sub>2</sub>O and 1mmol of NH<sub>4</sub>VO<sub>3</sub> was added to 30 mL of 2 M nitric acid solution at room temperature and remained continuous stirring for 30 minutes. Then, an appropriate amount of NH<sub>4</sub>OH ( $25\sim28\%$ ) was also added into the prepared solution to fit the pH value to 8. After stirring for 30 min, a clear orange solution was obtained. This solution was poured into a 50 mL Teflon-lined autoclave and maintained at 180°C for 24 h under autogenous pressure, and then naturally cooled to room temperature. The resulting precipitates were collected and washed with ethanol and deionized water thoroughly and dried at 80°C in air.

Photoelectrochemical measurements: The BiVO4 nanobelts suspended in water and the

mixtures were ultrasonically scattered for 15 min to form homogeneous solution. Then, the solution was spin coated on a Fluorine-doped tin oxide (FTO) substrate with a rate of 300 rpm for 30 s. This procedure was repeated for 3 times. Photoelectrochemical properties were measured in a three-electrode configuration. A Pt foil, saturated calomel electrode (SCE), and 0.2 M sodium sulfate with methanol were used as the counter-electrode, the reference electrode, and the electrolyte, respectively. The current-time (i-t) curves were collected at 0.4 V vs SCE. A 300 W Xe lamp was utilized as the light source.

**Photocatalytic reactions:** The photocatalytic  $O_2$  evolution was carried out with 0.3 g photocatalyst suspending in AgNO<sub>3</sub> solution in a Pyrex glass reaction cell. The reaction cell was connected to a gas-closed system with a gas-circulated pump. A 300 W Xe arc lamp was employed for the light source of photocatalytic reaction. The evolved  $O_2$  was analyzed by an online gas chromatograph (GC-8A; Shimadzu Corp., Japan) equipped with a thermal conductivity detector.

## **Additional Figures**



Fig. S1. SEM images of  $BiVO_4$  nanoparticles before hydrothermal reaction.



Fig. S2. Sideview TEM image of  $BiVO_4$  nanobelts.



Fig. S3. SEM image of  $BiVO_4$  nanoparticles.



Fig. S4. SEM images of ultrathin BiVO<sub>4</sub> nanobelts after photocatalytic oxidation of water.