Evidence for a Multivalent Effect in Inhibition of Sulfatases Involved in Lysosomal Storage Disorders (LSDs)

G. D'Adamio,^a C. Matassini,^{*a} C. Parmeggiani,^{a,b} S. Catarzi,^c A. Morrone,^c A. Goti,^c P. Paoli,^d and F. Cardona^{*a}

^aDepartment of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy.

^bCNR – INO and LENS, via N. Carrara 1, 50019 Sesto Fiorentino (FI), Italy.

^cPaediatric Neurology Unit and Laboratories, Neuroscience Department, Meyer Children's Hospital, and Department of Neurosciences, Pharmacology and Child Health. University of Florence, Viale Pieraccini n. 24, 50139 Firenze, Italy.

^dDepartment of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy.

Supporting Information

Table of contents

Synthesis and characterization of compounds 2 and 4.	S3-S4
¹ H-NMR and ¹³ C-NMR spectra of compound 4 .	S5
Synthesis and characterization of compounds 5.	S6
¹ H-NMR and ¹³ C-NMR spectra of compound 5 .	S7
Synthesis and characterization of compounds 6.	S8
¹ H-NMR and ¹³ C-NMR spectra of compound 6 .	S9
Synthesis and characterization of compounds 8.	S10
¹ H-NMR and ¹³ C-NMR spectra of compound 8 .	S11
Synthesis and characterization of nonavalent pyrrolidine iminosugar 10 .	S12
Characterization, ¹ H-NMR and ¹³ C-NMR spectra of compound 10 .	S13
Synthesis and characterization of compound 12 .	S14
¹ H-NMR and ¹³ C-NMR spectra of compound 12 .	S15
Synthesis and characterization of compound 13 .	S16
¹ H-NMR and ¹³ C-NMR spectra of compound 13 .	S17
Synthesis and characterization of nonavalent pyrrolidine iminosugar 14.	S18
¹ H-NMR and ¹³ C-NMR spectra of compound 14 .	S19
Biochemical characterization on human GALNS and IDS.	S20
IC ₅₀ determination.	S21
IC ₅₀ of compound 10 towards GALNS.	S23
IC ₅₀ of compound 14 towards GALNS.	S24
IC ₅₀ of compound 6 towards GALNS.	S25
IC ₅₀ of compound 13 towards GALNS.	S26
IC ₅₀ of compound 10 towards IDS.	S27
IC ₅₀ of compound 14 towards IDS.	S28
IC ₅₀ of compound 6 towards IDS.	S29
IC ₅₀ of compound 13 towards IDS.	S30

Synthesis of (2*R*,3*R*,4*R*)-3,4-bis(benzyloxy)-2-[(benzyloxy)methyl]-1-[6-azido)hexyl]-1*H*-pyrrolidine (4)

To a solution of **1a** (125 mg, 0.3 mmol) in 6 ml of ethanol, NaBH₄ (23 mg, 0.6 mmol) was added and the mixture was stirred at room temperature for 16 h, until a TLC analysis (AcOEt:EP 1:1) showed the disappearance of the starting material ($R_f = 0.30$) and the formation of a new product ($R_f = 0.91$). After the addition of 0.5 ml of MeOH and 1.5 ml of H₂O the mixture was raised at room temperature and stirred for another 3 h, then it was evaporated under reduced pressure and the crude obtained filtered through Celite® washing the solid several times with ethyl ether. The collected solution was evaporated under reduced pressure affording the desired pure hydroxylamine intermediate (124 mg, 0.3 mmol) that was dissolved in 4 ml of acetic acid. Zn powder (351 mg, 6 mmol) and 4 ml of H₂O were added. The reaction mixture was stirred at room temperature for 1.5 h until a TLC analysis (CH₂Cl₂:MeOH 30:1) showed the disappearance of the starting material ($R_f =$ 0.81) and the formation of a new product ($R_f = 0.21$). After filtration through cotton, the mixture was concentrated at reduced pressure and then saturated aqueous solution of Na₂CO₃ was added at 0 °C until basic pH. After extraction with AcOEt (3 x 30 mL), the organic layers were dried on Na₂SO₄, concentrated under reduced pressure and the crude was purified by Flash Column Chromatography (CH₂Cl₂:MeOH 30:1) affording pure 2 ($R_f =$ 0.21, 119 mg, 0.29 mmol, 98% over two steps) as a colorless oil [for an alternative synthesis see of compound 2 W.-C. Cheng, C.-Y. Wenga, W.-Y. Yun, S.-Y. Chang, Y.-C. Lin, F.-J. Tsai, F.-Y. Huang and Y.-R. Chen, *Bioorg. Med. Chem*, 2013, 21, 5021]. A solution of 2 (175 mg, 0.43 mmol), 1-azido-6-bromohexane (3, 134 mg, 0.65 mmol) and

A solution of **2** (175 mg, 0.43 mmol), 1-azido-6-bromonexane (**3**, 134 mg, 0.65 mmol) and TEA (120 μ L, 0.86 mmol) in 4 ml of THF was stirred in microwave at 150°C. After 2 h a TLC analysis (CH₂Cl₂:MeOH 10:1) still showed the presence of the starting material (R_f = 0.51), then 0.5 equivalents of 1-azido-6-bromohexane (**3**) were added and the reaction mixture was stirred in microwave at 150 °C for another 2 h until complete formation of the desired product (R_f = 0.98, CH₂Cl₂:MeOH 10:1) was achieved. After evaporation under reduced pressure, the crude was purified by Flash Column Chromatography (EP:AcOEt 4:1) affording pure **4** (R_f = 0.31, 203 mg, 0.38 mmol, 88%) as a yellow oil. [α]_D³⁰ = -25.1 (*c*)

= 1.30, CHCl₃); ¹H-NMR (400 MHz, CDCl₃): δ = 7.35-7.25 (m, 15H, H-Ar), 4.57-4.42 (m, 6H, H-Bn), 3.92 (d, *J* = 4.8 Hz, 1H, H-4), 3.88 (d, *J* = 3.9 Hz, 1H, H-3), 3.62-3.50 (m, 1H, Ha-6), 3.52 (dd, *J* = 9.8, 6.3 Hz, 1H, Hb-6), 3.24 (t, *J* = 7.1 Hz, 2H, H-12), 3.24-3.19 (m, 1H, Ha-5), 2.88-2.81 (m, 1H, Ha-7), 2.71 (bs, 1H, H-2), 2.55 (dd, *J* = 10.3, 4.9 Hz, 1H, Hb-5), 2.38-2.31 (m, 1H, Hb-7), 1.59 (quint, *J* = 7.1 Hz, 2H, H-11), 1.54-1.48 (m, 2H, H-8), 1.41-1.25 (m, 4H, H-9 and H-10); ¹³C-NMR (50 MHz, CDCl₃): δ = 138.5, 138.4, 138.3 (s, 3C, C-Ar), 128.3-127.6 (d, 15C, C-Ar), 85.5 (d, C-3), 81.7 (d, C-4), 73.2 (t, C-Bn) 71.3 (t, C-Bn), 71.2 (t, C-Bn), 71.0 (t, C-6), 69.4 (d, C-2), 57.3 (t, C-5), 55.5 (t, C-7), 51.4 (t, C-12), 28.8 (t, C-11), 28.0 (t, C-8), 27.0, 26.6 (t, 2C, C-9 and C-10); IR (CDCl₃): v = 3088, 3066, 3032, 3009, 2937, 2862, 1496, 1453, 1365, 1261, 1096 cm⁻¹; MS (ESI): m/z 529.42 ([M+1]⁺; 100), 551.42 ([M+Na]⁺; 38); elemental analysis calcd (%) for C₃₂H₄₀N₄O₃ (528.68): C 72.70, H 7.63, N 10.60; found: C 72.32, H 7.23, N 10.59.

S5

Synthesis of (2*R*, 3*R*, 4*R*)-1-hexyl[4-(hydroxyethyl)-1*H*-1,2,3-triazol-1-yl]-3,4bis(benzyloxy)-2-[(benzyloxy)methyl]-pyrrolidine

To a solution of 4 (64 mg, 0.12 mmol) in 3 ml of 2:1 THF-H₂O CuSO₄ (30 mol%, 6 mg, 0.04 mmol), sodium ascorbate (60 mol%, 14 mg, 0.07 mmol) and 3-butyn-1-ol (9 mg, 0.13 mmol) were added. The reaction mixture was stirred in microwave at 80 °C for 45 min, until a TLC analysis (EP:AcOEt 3:1) showed the disappearance of the starting material (Rf = 0.49) and the formation of a new product ($R_f = 0.00$). After filtration through Celite[®], the solvent was removed under reduced pressure and the crude was purified by Flash Column Chromatography (AcOEt) affording pure **5** ($R_f = 0.23$, 67 mg, 0.11 mmol, 93%) as a yellow oil. $[\alpha]_D^{26} = -20.3$ (*c* = 0.94, CHCl₃); ¹H-NMR (400 MHz, CDCl₃): δ = 7.34 (s, 1H, H-Triazole), 7.34-7.25 (m, 15H, H-Ar), 4.56-4.42 (m, 6H, H-Bn), 4.27 (t, J = 7.1 Hz, 2H, H-12), 3.93-3.90 (m, 1H, H-4), 3.91 (t, J = 6.0 Hz, 2H, CH₂OH), 3.88-3.87 (m, 1H, H-3), 3.58 (dd, J = 9.7, 5.3 Hz, 1H, Ha-6), 3.52 (dd, J = 9.7, 6.6 Hz, 1H, Hb-6), 3.22-3.19 (m, 1H, Ha-5), 2.93 (t, J = 6.0 Hz, 2H, CH₂CH₂OH), 2.86-2.79 (m, 1H, Ha-7), 2.74-2.72 (m, 1H, H-2), 2.55 (dd, J = 10.6, 5.1 Hz, 1H, Hb-5), 2.36-2.29 (m, 1H, Hb-7), 1.86 (quint, J = 7.0 Hz, 2H, H-11), 1.54-1.42 (m, 2H, H-8), 1.38-1.22 (m, 4H, H-9 and H-10); ¹³C-NMR (50 MHz, CDCl₃): δ = 145.5 (s, C-Triazole), 138.4, 138.1, 138.0 (s, 3C, C-Ar), 128.3-127.5 (d, 15C, C-Ar), 121.4 (d, C-Triazole), 85.4 (d, C-3), 81.6 (d, C-4), 73.2 (t, C-Bn) 71.3 (t, C-Bn), 71.0 (t, 2C, C-Bn and C-6), 69.4 (d, C-2), 61.5 (t, CH₂OH), 57.2 (t, C-5), 55.4 (t, C-7), 50.1 (t, C-12), 30.2 (t, C-11), 28.8 (t, CH₂CH₂OH), 27.8 (t, C-8), 26.8, 26.3 (t, C-9 and C-10); IR (CDCl₃): v = 3620, 3466, 3088, 3066, 3031, 2936, 2862, 1496, 1453, 1310, 1207, 1098 cm⁻¹; MS (ESI): m/z 599.50 ([M+1]⁺; 100), 621.42 ([M+Na]⁺; 28); elemental analysis calcd (%) for C₃₆H₄₆N₄O₄ (598.77): C 72.21, H 7.74, N 9.36; found: C 72.06, H 7.52, N 9.27.

¹³C-NMR spectrum of compound 5 (50 MHz, CDCl₃)

Synthesis of (2*R*, 3*R*, 4*R*)-1-hexyl[4-(hydroxyethyl)-1*H*-1,2,3-triazol-1-yl]-3,4bis(hydroxy)-2-[(hydroxy)methyl]-pyrrolidine

To a solution of 5 (63 mg, 0.105 mmol) in 15 ml of methanol, 32 mg of 10% Pd/C and two drops of 37% HCl were added under nitrogen atmosphere, then the mixture was stirred under hydrogen atmosphere at room temperature for two days, until a NMR control showed the disappearance of the starting material. The mixture was then filtered through Celite[®] and the solvent was removed under reduced pressure affording a crude yellow oil. Free amine was obtained by passing the hydrochloride salt through a Dowex 50WX8 ionexchange resin. Elution with 6% NH₄OH afforded the free base 6 (25 mg, 0.076 mmol, 74%) as a yellow oil. $[\alpha]_{D^{23}} = -15.7$ (*c* = 0.21, MeOH); ¹H-NMR (400 MHz, D₂O): $\delta = 7.69$ (s, 1H, H-Triazole), 4.26 (t, J = 6.8 Hz, 2H, H-12), 4.04-4.03 (m, 1H, H-4), 3.85-3.83 (m, 1H, H-3), 3.72 (t, J = 6.6 Hz, 2H, CH_2OH), 3.64 (d, J = 5.4 Hz, 2H, H-6), 3.04 (d, J = 11.2Hz, 1H, Ha-5), 2.86-2.76 (m, 2H, Hb-5 and Ha-7), 2.80 (t, J = 6.4 Hz, 2H, CH_2CH_2OH), 2.68-2.62 (m, 1H, H-2), 2.45-2.39 (m, 1H, Hb-7), 1.76 (quint, J = 6.7 Hz, 2H, H-11), 1.46-1.32 (m, 2H, H-8), 1.24-1.08 (m, 4H, H-9 and H-10); ¹³C-NMR (50 MHz, D₂O): δ = 145.2 (s, C-Triazole), 123.8 (d, C-Triazole), 78.3 (d, C-3), 75.0 (d, C-4), 72.8 (d, C-2), 60.6 (t, CH₂OH), 60.5 (t, C-6), 58.4 (t, C-5), 55.6 (t, C-7), 50.2 (t, C-12), 29.1 (t, C-11), 27.8 (t, CH₂CH₂OH), 25.9, 25.8, 25.2 (t, 3C, C-8, C-9 and C-10); MS (ESI): m/z 329.17 ([M+1]⁺; 94), 351.08 ([M+Na]⁺; 100); elemental analysis calcd (%) for C₁₅H₂₈N₄O₄ (328.41): C 54.86, H 8.59, N 17.06; found: C 54.79, H 8.57, N 17.09.

Synthesis of (2*R*,3*R*,4*R*)-1-[6-azido)hexyl]-3-hydroxymethylhexahydro-1*H*-pyrrolidine-1,2-diol

A solution of **7** (111 mg, 0.83 mmol), 1-azido-6-bromohexane (**3**, 258 mg, 1.25 mmol) and K₂CO₃ (173 mg, 1.25 mmol) in 6 ml of a mixture CH₃CN/H₂O 5:1 was stirred in microwave at 120°C for 2 h, until a TLC analysis (CH₂Cl₂:MeOH 2:1 + 1% v/v 6% NH₄OH) showed the disappearance of the starting material ($R_f = 0.42$) and the formation of a new product ($R_f =$ 0.98). After filtration through Celite[®], the solvent was removed under reduced pressure and the crude was purified by Flash Column Chromatography (CH₂Cl₂:MeOH 6:1 + 1% v/v 6% NH₄OH) affording pure **8** (R_f = 0.20, 197 mg, 0.76 mmol, 92%) as a yellow oil. $[\alpha]_D^{29}$ = -23.3 (c = 0.36, MeOH); ¹H-NMR (400 MHz, D₂O): $\delta = 3.99-3.97$ (m, 1H, H-4), 3.81-3.79 (m, 1H, H-3), 3.63-3.55 (m, 2H, H-6), 3.20 (t, J = 6.9 Hz, 2H, H-12), 2.89 (d, J = 10.7 Hz, 1H, Ha-5), 2.71 (td, J = 11.2, 5.8 Hz, 1H, Ha-7), 2.63 (dd, J = 11.2, 5.9, 1H, Hb-5), 2.42 (g, J = 5.3 Hz, 1H, H-2), 2.26 (td, J = 11.2, 5.3 Hz, 1H, Hb-7), 1.53-1.46 (m, 2H, H-11), 1.44-1.34 (m, 2H, H-8), 1.32-1.17 (m, 4H, H-9 and H-10); ¹³C-NMR (50 MHz, D₂O): δ = 79.4 (d, C-3), 75.6 (d, C-4), 72.1 (d, C-2), 61.4 (t, C-6), 58.5 (t, C-5), 55.4 (t, C-7), 51.4 (t, C-12), 28.0 (t, C-11), 26.7 (t, C-8), 26.4, 25.9 (t, 2C, C-9 and C-10); MS (ESI): m/z 281.25 ([M+Na]⁺; 100); elemental analysis calcd (%) for C₁₁H₂₂N₄O₃ (258.32): C 51.15, H 8.58, N 21.69; found: C 51.08, H 8.35, N 21.54.

¹H-NMR spectrum of compound 8 (400 MHz, D₂O)

¹³C-NMR spectrum of compound 8 (50 MHz, D₂O)

Synthesis of nonavalent pyrrolidine iminosugars 10

To a solution of **8** (169 mg, 0.65 mmol) in 7.5 ml of 2:1 THF/H₂O CuSO₄ (30 mol%, 3 mg, 0.02 mmol), sodium ascorbate (60 mol%, 8 mg, 0.04 mmol) and **9** (60 mg, 0.07 mmol) were added. The reaction mixture was stirred in microwave at 80 °C for 45 min, until a TLC analysis (EP:AcOEt 1:1) showed the disappearance of the starting material (R_f = 0.74) and the formation of a new product (R_f = 0.00). After filtration through Celite[®], the solvent was removed under reduced pressure and the crude was purified by Flash Column Chromatography (MeOH:CH₂Cl₂:NH₄OH 2:1:0.5) and Size Exclusion Chromatography Sephadex LH-20 (eluting with H₂O) affording pure **10** (R_f = 0.88, 182 mg, 0.057 mmol, 81%) as a yellow oil. [α] $_{D^{28}}$ = -4.2 (*c* = 0.9, H₂O); ¹H-NMR (400 MHz, D₂O): δ = 7.85 (s, 3H, H-Ar), 7.75 (s, 9H, H-Triazole), 4.43 (s, 18H, O*CH*₂Triazole), 4.14-4.13 (m, 9H, H-4), 4.10 (t, *J* = 7.1 Hz, 18H, H-12), 3.92-3.91 (m, 9H, H-3), 3.79 (dd, *J* = 12.4, 5.2 Hz, 9H, Ha-6), 3.73 (dd, *J* = 12.4, 7.6 Hz, 9H, Hb-6), 3.69 (s, 18H, C*H*₂O), 3.44-3.41 (m, 9H, Ha-5), 3.27-3.15 (m, 27H, Hb-5, H-2 and Ha-7), 2.94-2.86 (m, 9H, Hb-7), 1.59 (quint, *J* = 7.2 Hz, 18H, H-11), 1.52-1.44 (m, 18H, H-8), 1.16-1.00 (m, 36H, H-9 and H-10); ¹³C-NMR (50 MHz, D₂O): δ = 167.0 (s, 3C, C=O), 143.0 (s, 9C, C-Triazole), 134.2 (s, 3C, C-Ar), 128.5-

128.1 (d, 3C, C-Ar), 123.9 (d, 9C, C-Triazole), 75.2 (d, 9C, C-3), 74.3 (d, 9C, C-2), 73.0 (d, 9C, C-4), 66.3 (t, 9C, C*CH*₂O), 62.7 (t, 9C, O*CH*₂Triazole), 59.9 (s, 3C, *C*CH₂O), 57.9 (t, 9C, C-6), 57.7 (t, 9C, C-5), 55.7 (t, 9C, C-7), 49.3 (t, 9C, C-12), 28.3 (t, 9C, C-11), 24.4, 24.2 (t, 18C, C-9 and C-10), 23.7 (t, 9C, C-8); MS (ESI): m/z 1063.08 ([(M+3)/3]⁺; 66); elemental analysis calcd (%) for C₁₄₇H₂₄₉N₃₉O₃₉ (3186.79): C 55.40, H 7.88, N 17.14; found: C 55.21, H 7.64, N 17.01.

 $^{13}\text{C-NMR}$ spectrum of compound 10 (50 MHz, D₂O)

Synthesis of (2*R*,3*R*,4*S*)-1-[6-azido)hexyl]-3-hydroxymethylhexahydro-1*H*pyrrolidine-1,2-diol

A solution of **11** (43 mg, 0.32 mmol), 1-azido-6-bromohexane (**3**, 98 mg, 0.48 mmol) and K₂CO₃ (66 mg, 0.48 mmol) in 3 ml of a mixture CH₃CN/H₂O 5:1 was stirred in microwave at 120°C for 2 h, until a TLC analysis (CH₂Cl₂:MeOH 2:1 + 1% v/v 6% NH₄OH) showed the disappearance of the starting material (R_f = 0.42) and the formation of a new product (R_f = 0.98). After filtration through Celite[®], the solvent was removed under reduced pressure and the crude was purified by Flash Column Chromatography (CH₂Cl₂:MeOH 5:1 + 1% v/v 6% NH₄OH) affording pure **12** (R_f = 0.31, 53 mg, 0.21 mmol, 66%) as a yellow oil. [α]p²³ = -28.3 (*c* = 0.70, MeOH); ¹H-NMR (400 MHz, CD₃OD): δ = 4.06-4.00 (m, 1H, H-4), 3.85 (t, *J* = 5.1 Hz, 1H, H-3), 3.60-3.55 (m, 2H, H-6), 3.30-3.23 (m, 3H, H-12 and Ha-5), 2.83 (ddd, *J* = 11.9, 8.8, 7.3 Hz, 1H, Ha-7), 2.58 (q, *J* = 4.7 Hz, 1H, H-2), 2.46-2.40 (m, 2H, Hb-7 e Hb-5), 1.63-1.56 (m, 2H, H-11), 1.55-1.48 (m, 2H, H-8), 1.44-1.28 (m, 4H, H-9 e H-10); ¹³C-NMR (50 MHz, CD₃OD): δ = 72.7 (d, C-3), 71.4 (d, C-2), 69.5 (d, C-4), 61.3 (t, C-6), 57.6 (t, C-5), 55.6 (t, C-7), 51.0 (t, C-12), 28.5 (t, C-11), 27.5 (t, C-8), 26.6, 26.3 (t, 2C, C-9 and C-10); MS (ESI): m/z: 259.17 ([M+1]⁺; 100); elemental analysis calcd (%) for C₁₁H₂₂N₄O₃ (258.32): C 51.15, H 8.58, N 21.69; found: C 51.12, H 8.54, N 21.66.

Synthesis of (2*R*, 3*R*, 4*S*)-1-hexyl[4-(hydroxyethyl)-1*H*-1,2,3-triazol-1-yl]-3,4bis(hydroxy)-2-[(hydroxy)methyl]-pyrrolidine

To a solution of **12** (64 mg, 0.22 mmol) in 6 ml of 2:1 THF/H₂O CuSO₄ (30 mol%, 11 mg, 0.07 mmol), sodium ascorbate (60 mol%, 26 mg, 0.13 mmol) and 3-butyn-1-ol (20 µL, 0.26 mmol) were added. The reaction mixture was stirred in microwave at 80 °C for 45 min, until a TLC analysis (CH₂Cl₂:MeOH 6:1 + 1% v/v 6% NH₄OH) showed the disappearance of the starting material ($R_f = 0.22$) and the formation of a new product ($R_f = 0.00$). After filtration through Celite[®], the solvent was removed under reduced pressure and the crude was purified by Flash Column Chromatography (CH₂Cl₂:MeOH 6:1 + 1% v/v 6% NH₄OH) affording pure **13** (R_f = 0.13, 64 mg, 0.19 mmol, 89%) as a yellow oil. $[\alpha]_D^{22} = -10.0$ (*c* = 0.67, MeOH); ¹H-NMR (400 MHz, D₂O): 7.65 (s, 1H, H-Triazole), 4.22 (t, J = 6.9 Hz, 2H, H-12), 3.99 (q, J = 5.8 Hz, 1H, H-4), 3.80 (t, J = 5.4 Hz, 1H, H-3), 3.68 (t, J = 6.4 Hz, 2H, *CH*₂OH), 3.58-3.45 (m, 2H, H-6), 3.19 (dd, *J* = 10.7, 5.9 Hz, 1H, Ha-5), 2.76 (t, *J* = 6.4 Hz, 2H, CH_2CH_2OH), 2.76-2.71 (m, 1H, Ha-7), 2.66 (q, J = 5.2 Hz, 1H, H-2), 2.45 (dd, J = 10.7, 6.8 Hz, 1H, Hb-5), 2.39 (td, J = 11.7, 5.4 Hz, 1H, Hb-7), 1.75-1.68 (m, 2H, H-11), 1.39-1.27 (m, 2H, H-8), 1.17-1.05 (m, 4H, H-9 and H-10); ¹³C-NMR (100 MHz, D₂O): δ = 145.2 (s, C-Triazole), 123.8 (d, C-Triazole), 72.1 (d, C-3), 70.8 (d, C-2), 69.0 (d, C-4), 60.7, 59.9 (t, C-6 and CH₂OH), 56.9 (t, C-5), 56.2 (t, C-7), 50.2 (t, C-12), 29.1 (t, C-11), 27.8 (t, CH₂CH₂OH), 25.8, 25.7, 25.2 (t, 3C, C-8, C-9 and C-10); MS (ESI): m/z 329.40 ([M+1]⁺; 32), 351.36 ([M+Na]⁺; 100); elemental analysis calcd (%) for C₁₅H₂₈N₄O₄ (328.41): C 54.86, H 8.59, N 17.06; found: C 54.81, H 8.56, N 17.04.

Synthesis of nonavalent pyrrolidine iminosugars 14

To a solution of **12** (41 mg, 0.158 mmol) in 3 ml of 2:1 THF/H₂O CuSO₄ (30 mol%, 1 mg, 0.005 mmol), sodium ascorbate (60 mol%, 2 mg, 0.010 mmol) and **9** (15 mg, 0.017 mmol) were added. The reaction mixture was stirred in microwave at 80 °C for 45 min, until a TLC analysis (EP/AcOEt 2:1) showed the disappearance of the starting material (R_f = 0.26) and the formation of a new product (R_f = 0.00). After filtration through Celite[®], the solvent was removed under reduced pressure and the crude was purified by Flash Column Chromatography (MeOH:CH₂Cl₂:NH₄OH 2:1:0.75) and Size Exclusion Chromatography Sephadex LH-20 (eluting with H₂O) affording pure **14** (R_f = 0.26, 38 mg, 0.012 mmol, 71%) as a yellow oil. [α]p²³ = -2.2 (*c* = 0.75, H₂O); ¹H-NMR (400 MHz, D₂O): δ = 7.86 (s, 3H, H-Ar), 7.76 (s, 9H, H-Triazole), 4.43 (s, 18H, O*CH*₂Triazole), 4.19 (pseudo q, *J* = 4.1 Hz, 9H, H-4), 4.11 (t, *J* = 6.9 Hz, 18H, H-12), 4.01 (dd, *J* = 7.3, 4.4 Hz, 9H, H-3), 3.80 (dd, *J* = 13.1, 3.4 Hz, 9H, Ha-6), 3.70 (dd, *J* = 13.1, 4.9 Hz, 9H, Hb-6), 3.69 (s, 18H, C*CH*₂O), 3.60 (dd, *J* = 12.7, 4.4 Hz, 9H, Ha-5), 3.36-3.33 (m, 9H, H-2), 3.21 (dt, *J* = 12.2, 8.3 Hz, 9H, Ha-7), 3.08 (dd, *J* = 12.7, 2.9 Hz, 9H, Hb-5), 2.98 (dt, *J* = 12.2, 8.1 Hz, 9H, Hb-7), 1.64-1.56 (m,

18H, H-11), 1.56-1.44 (m, 18H, H-8), 1.18-0.98 (m, 36H, H-9 and H-10); ¹³C-NMR (100 MHz, D₂O): δ = 167.9 (s, 3C, C=O), 143.9 (s, 9C, C-Triazole), 135.2 (s, 3C, C-Ar), 128.9 (d, 3C, C-Ar), 124.7 (d, 9C, C-Triazole), 70.7 (d, 9C, C-3), 70.5 (d, 9C, C-2), 68.6 (d, 9C, C-4), 67.2 (t, 9C, C*CH*₂O), 63.5 (t, 9C, O*CH*₂Triazole), 60.7 (s, 3C, *C*CH₂O), 57.2, 57.1, 57.0 (t, 27C, C-6, C-5 and C-7), 50.1 (t, 9C, C-12), 29.1 (t, 9C, C-11), 25.0, 24.9 (t, 18C, C-9 and C-10), 24.4 (t, 9C, C-8); MS (ESI): m/z 1070.58 ([(M+3)/3]⁺; 81); elemental analysis calcd (%) for C₁₄₇H₂₄₉N₃₉O₃₉ (3186.79): C 55.40, H 7.88, N 17.14; found: C 55.29, H 7.74, N 17.02.

¹H-NMR spectrum of compound 14 (400 MHz, D₂O)

Biochemical tests on human GALNS and IDS

For nonavalent compounds **10** and **14** and their monovalent counterparts **6** and **13** the percentage of inhibition, at 1 mM concentration, towards GALNS and IDS using leukocyte extracts from healthy donors was evaluated.

Leukocyte pellets were disrupted by sonication in water and the micro BCA protein assay kit (Sigma-Aldrich) was used to set up the protein amount for the enzymatic assay, according to the manufacturer's instructions.

GALNS enzymatic test:

Enzyme activity was measured by setting the reaction in 0.2 ml tubes and performing the experiments in triplicates as follows:

Step 1:

Iminosugars solution (3 μ I), leukocytes homogenate (7 μ I) and 20 μ I of 4methylumbelliferyI-ß-galactoside-6-sulphate·Na (Moscerdam Substrates) substrate solution in Na-Acetate/acetic acid buffer (0.1 M/0.1 M, pH 4.3) containing 0.1 M NaCI , 0.02% (w/v) NaN₃ and 5 mM Pb-acetate were incubated for 17 h at 37 °C.

Step 2:

After step 1 the tubes were placed on an ice cooler and the reaction was stopped by addition of 5 μ l of Na-phosphate buffer (0.9 M, pH 4.3) containing 0.02 % of NaN₃ and by efficient mixing with vortex. Then, 10 μ l of β -Gal-A-10U were added to each sample and the suspension mixed again in vortex apparatus, then samples were incubated for 2 h at 37°C.

At the end of this period the tubes were placed on an ice cooler and the samples were transferred in a cooled flat-bottomed 96 well plate and the reaction was immediately stopped with 200 μ l of NaHCO₃/Na₂CO₃ buffer (0.5M/0.5M pH 10.7) containing 0.025% (w/v) of Triton X-100. Fluorescence was measured in a SpectraMax M2 microplate reader (Molecular-Devices) using a 365 nm excitation wavelength and a 435 nm emission wavelength.

Percentage of GALNS inhibition was given with respect to the control (without iminosugar). Experiments were performed in triplicate, and the mean \pm S. D. was calculated.¹

IDS enzymatic test:

Enzyme activity was measured by setting the reaction in 0.2 ml tubes and performing the experiments in triplicates as follows:

Step 1:

Iminosugars solution (3 μ I), leukocytes homogenate (7 μ I) and 20 μ I of 4methylumbelliferyI- α -L-Iduronide-2-sulphate 2Na (Moscerdam Substrates) substrate solution were incubated for 4 h at 37 °C.

Step 2:

After step 1 the tubes were placed on an ice cooler and the reaction stopped by addition of 20 μ l of Na-Phosphate/Citrate buffer (0.2M/ 0.1M pH 4.5) and by efficient mixing with vortex. Then,10 μ l of LEBT (Lysosomal Enzymes purified from Bovine Testis) were added to each sample and the incubation was continued for 24 hours at 37°C.

At the end of this period tubes were placed on an ice cooler and the samples were transferred in a cooled flat-bottomed 96 well plate and the reaction was immediately stopped by addition of 200 μ I of NaHCO₃/Na₂CO₃ buffer (0.5M/0.5M pH 10.7) containing 0.025% (w/v) of Triton X-100.

Fluorescence was then measured in a SpectraMax M2 microplate reader (Molecular-Devices) using a 365 nm excitation wavelength and a 435 nm emission wavelength.

Percentage of IDS inhibition was given with respect to the control (without iminosugar). Experiments were performed in triplicate, and the mean \pm S. D. was calculated.²

IC₅₀ determination³

The IC₅₀ values against the GALNS and IDS inhibitors were determined by measuring the initial hydrolysis rate under fixed 4-methylumbelliferyl- β -galactoside-6-sulphate·Na concentration (6.66 mM). and 4-methylumbelliferyl- α -L-Iduronide-2-sulphate·2Na

¹O. P. Van Diggelen, H. Zhao, W. J. Kleijer, H. C. Janse, B. J. H. M. Poorthuis, J. Van Pelt, J. P. Kamerling and H. Galjaard, *Clinica Chimica Acta*, 1990, **187**, 131.

² Y. V. Voznyi, J. L. Keulemans and O. P. van Diggelen, J. Inher. Metabol. Dis., **2001**, 24, 675.

³ R. Ottanà, R. Maccari, J. Mortier, A. Caselli, S. Amuso, G. Camici, A. Rotondo, G. Wolber and P. Paoli, *Eur. J. Med. Chem.*, 2014, **71**, 112.

concentration (0.833 mM) respectively. Data obtained were fitted to the following equation using the Origin Microcal program:

$$\frac{Vi}{Vo} = \frac{Max - Min}{1 + \left(\frac{x}{IC_{50}}\right)^{slope}} + Min$$

where Vi/Vo, represents the ratio between the activity measured in the presence of the inhibitor (V_i) and the activity of the control without the inhibitor (V₀), "x" the inhibitor concentration, Max and Min, the maximal and minimal enzymatic activity observed, respectively.

IDS

