# **Supporting information**

# Selective growth of fullerene octahedron and flower-like particles by liquid-liquid interfacial precipitation method for super-hydrophobic applications

Thamodaran Partheeban and Marappan Sathish\* Functional Materials Division, CSIR-Central Electrochemical Research Institute, Karaikudi – 630003, INDIA. E. mail: <u>marappan.sathish@gmail.com; msathish@cecri.res.in</u>

## **Experimental section**

Fullerene micro-crystals were synthesized by mixing of fullerene saturated anisole solution with different volume of isopropyl alcohol (IPA) using LLIP method. In a typical precipitation,  $C_{60}$  saturated anisole solution was prepared by adding excess amount (150 mg) of  $C_{60}$  powder (99.5% pure, MTR Ltd) in 25 ml of anisole (AR grade, Merck). The mixture was ultrasonicated for 30 min followed by filtration to remove undissolved excess of  $C_{60}$  powder. Then, 1 ml of  $C_{60}$  saturated solution of anisole was taken in two 10 ml glass bottle and kept in ice water bath maintained 5 °C. Similarly, IPA was taken in glass beaker and stored in ice water bath 5 °C and calculated volume of IPA was added to  $C_{60}$  saturated solution of anisole gently and slowly through the glass bottle wall. For all the preparation, the 1 ml of  $C_{60}$  saturated solution was kept as constant and the volume of IPA is varied from 1 to 5 ml. The resulted solution was ultrasonicated for 30 sec and kept in an incubator at 5 °C. The formation of fullerene micro particles was observed within 1h at interfaces

### Characterisation

The formation of fullerene microcrystals was initially confirmed using optical microscopy (Leica microsystems with magnification ranges from 50x to 1000x). The phase formation and crystalline nature of the C<sub>60</sub> microcrystals were examined by powder X-ray diffraction (XRD) technique (X'Pert PRO, PANAlytical) using Cu K $\alpha$  radiation ( $\lambda$ =1.5418 Å) in the 2 $\theta$  ranges from

10 to 80° at 0.02° step with a count time of 0.2 s at each step. The morphology and the particle size of the C<sub>60</sub> microcrystals were analyzed by Field-emission scanning electron microscope (FE-SEM, Carl Zeiss Supra 55VP) and high resolution transmission electron microscope (HR-TEM, Tecnai G2 TF20) working at an accelerating voltage of 5-30 KV and 200 KV, respectively. Water contact angle measurements was carried out using goniometer (OCA 35 Data Physics).

#### Water contact angle measurements

Super-hydrophobic properties of synthesized flower and octahedron like fullerene particles are measured in terms of water contact angle measurements. Thin film (20  $\mu$ m) of fullerene microcrystals was fabricated on ITO substrate by dispersing 20 mg of fullerene microcrystals in 200  $\mu$ l of hexane. Then, the solvent in the dispersion coated on ITO plate was slowly evaporated under room temperature.



Figure S1. Size distribution of (a) flower-like and (b) octahedron-like fullerene micro-particles

X-ray photo electron spectroscopy is a powerful analytic tool to conform the presence of various elements and their oxidation states. The survey spectrum of fullerene flower-like crystals display strong line corresponding to carbon and a weak line corresponding to surface bound oxygen. The broad C1s peak can be deconvoluted into two peaks at 283.6 and 284.9 eV corresponding to C=C and C-C bonding, respectively and it is in good correspondence with the reported binding energy values<sup>1</sup>.



**Figure S2.** XPS (a) survey spectrum of flower-like fullerene crystals and (b) deconvoluted C 1s peak.



**Figure S3.** FE-SEM images of flower-like and octahedron-like fullerene micro-particles after 24 h (a & c) and 5 days (b & d).

#### Reference

1. R. G. Shrestha, L. K. Shrestha, A. H. Khan, G. S. Kumar, S. Acharya and K. Ariga, *ACS Appl. Mater. Interfaces*, 2014, **6**, 15597.