1	Re-excitation of localized electrons in SnO_2 quantum dots for
2	enhanced water photolysis activity
3	Xianqun Chen, ^{1, 2} Liping Li, ¹ Yuelan Zhang, ¹ Yangsen Xu, ¹ Guangshe Li* ^{1,3}
4	¹ Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian institute of
5	Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P.R. China
6	² College of Materials Science and Engineering, Fujian Normal University, Fuzhou 350007, P. R.
7	China
8	³ State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry,
9	Jilin University, Changchun 130012, P.R. China
10	Supporting Information

11

12 1. XRD and TG analysis of SCTX

XRD patterns of SCTX are displayed in Figure S1.The presence of two sets of diffraction 13 peaks that could beascribed to SnO2 and g-C3N4, respectively, demonstrated the formation of 14 hybrids between SnO₂ nanoparticles and g-C₃N₄.Furthermore, thermal gravities measurements 15 (Figure S2) shows that the g-C₃N₄ becomes unstable when the heat temperature above 500 $^{\circ}$ C. The 16 mass of hybrids SCT3.0, SCT8.0 and SCT18.0decreased rapidly in the temperature range 500°C to 17 660°C, indicating that the combustion of g-C₃N₄occurred in this temperature range.¹All samples 18 exhibited a weight losses of about 60%, confirmed the 40% mass ratios of SnO2 in the 19 corresponding hybrids, which is consistent withinitial mass ratio of SnO2.Based on the data 20 21 analysis results in reference², the wide combustion temperature edge of SCT-18.0 should 22 beattributed to the tight coupling between SnO_2 and $g-C_3N_4$.

8 2 O1s XPS spectra

9 The signal at 531.5 eV presents the adsorbed oxygen species (OH⁻) caused by oxygen vacancy,³

- 1 and its relative integrate areas of absorbed oxygen species to the lattice oxygen decrease from 45.6
- 2 to 19.3, which can reflect a decreased oxygen vacancy concentration caused by SnO_2 grain growth.
- 3

4 Table S1.Binding energy (B.E.), full width at half maximum (FWHM) and integral areas of O1s core levels for

Peak	Components	B.E. (eV)	FWHM (eV)	Area ratio (%)
	O-Sn ⁴⁺	530.2	1.5	37.2
O1s (SCT3.0)	OH-	531.5	1.9	45.6
	H ₂ O	532.8	1.9	17.2
	O-Sn ⁴⁺	530.2	1.7	45.8
O1s (SCT8.0)	OH-	531.4	1.8	41.7
	H ₂ O	532.7	2.0	12.5
	O-Sn ⁴⁺	530.2	1.9	53.7
O1s (SCT13.0)	OH-	531.3	1.8	33.5
	H ₂ O	532.7	1.8	12.9
	O-Sn ⁴⁺	530.2	2.0	71.5
O1s (SCT18.0)	OH-	531.5	1.7	19.3
	H ₂ O	532.7	1.9	9.2

5 samples SCT3.0, SCT8.0, SCT13.0, SCT18.0.

6

7 3. Morphologies of the samples

8 The morphologies of hybrids SCT4.0, SCT13.0 and SCT18.0 were directly observed by TEM 9 and HRTEM. As illustrated in Figure S3, SnO₂ particles (the black particles) in samples SCT4.0, 10 SCT13.0 and SCT18.0 were successfully dispersed onto the stacked g-C₃N₄ layers (the gray color 11 part, as indicated by the report of reference 4) even though some of SnO₂ nanoparticles were 12 agglomerated.XRD analysis demonstrated that the crystallinityof SnO₂nanocrystals in hybrids was

enhanced with their coarsening, which infers that the surface defect concentration could were also 1 reduced. Carefully examining the HRTEM image of Figure S4(c) for SCT4.0, it can be found that 2 the atom spots in (110) plane are not continues, and a high density of dark holes (as marked by the 3 white circles). These dark holes could be well-correlated to the oxygen vacancy sites. Using 4 HRTEM analysis to demonstrate the existence of surface oxygen vacancy defects for nano-oxides 5 has been reported in previous investigation.⁵Comparing toSCT4.0, the defect concentration in 6 SCT13.0(Figure S4f)ismuch low. Alternatively, HRTEMof SCT18.0 in Figure 5(i)shows a nearly 7 perfect atom arrangement in (110) lattice plane, suggesting the defect almost disappeared. These 8 observations approved that annealing of SnO₂ in higher temperature could reduce the content of 9 oxygen vacancy on the surface of SnO₂ nanocrystals. Figure S5 provides the grain size distribution 10 of SnO₂nanocrystals in SCT4.0, SCT13.0 and SCT18.0. The mean grain size of SnO₂ in SCT4.0 is 11 12 3.9 nm, which issmaller than that of 12.6 nm in SCT13.0. The mean grain size of SnO₂ belong to SCT-18.0 is 20.5 nm, which is larger than that that calculated via XRD data broadening. 13

Figure S3.(A) TEM and (B) HRTEM image of g-C₃N₄.

16

- 2
- 3 Figure S4.TEM, HRTEM and local magnified images for samples: (a, b, c) SCT4.0, (d, e, f) SCT13.0 and (g, h, i)
- 4 SCT18.0.

1

- 2 Figure S5. The grain size distribution of SnO₂-4.0 (A1,A2), SnO₂-13.0 (B1,B2) and SnO₂-18.0 (C1, C2) when
- 3 supported on $g-C_3N_4$.
- 4 Table S2. The BET specific area measured for samples SCT-4.0, SCT-13.0 and SCT-18.0.

Sample	SCT4.0	SCT-13.0	SCT-8.0
BET specific area (m ² /g)	105	72	45

5

6 4 Photocatalytic activity of SnO₂-8.0

7 The activity of as-prepared SnO_2 -8.0 in hydrogen generation from water splitting is really poor to

- 8 yield hydrogen of 3.0µmol and 0 µmol after irradiation for 5h under the 260 nm and 420 nm light,
- 9 which approved its appropriate energy band position for hydrogen generating from water
- 10 photolysis.

1

2 Figure S6.Catalytic hydrogen yield from water splitting for 100mg of as-prepared SnO₂ under ultraviolet (λ >260

3 nm, the black line) and visible (λ >420 nm, the red line) light irradiation with 300W Xe lamp.

4 References

5 1. J. X. Sun, Y.P. Yuan, L.G. Qiu, X. Jiang, A.J. Xie, Y.H. Shen and J.F. Zhu, Dalton. T, 2012, 41,

6 6756-6763.

- 7 2.Y. He, L. Zhang, M. Fan, X. Wang, M. L. Walbridge, Q. Nong, Y. Wu, L. Zhao, Sol. Energ.
- 8 Mat.and Sol. C, 2015, 137, 175-184.
- 9 3.Das, A; Bonu, V; Prasad, A. K; Panda, D; Dhara, S; Tyagi, A. K, J. Mater. Chem. C, 2014, 2(1),

10 164-171.

- 11 4.X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen, Y. Hou, X. Fu and M. Antonietti, J. Am.
- 12 Chem.Soc, 2009, 131(5), 1680-1681.
- 13 5.N. J. Lawrence, J. R. Brewer, L. Wang, T.S. Wu, J. Wells-Kingsbury, M. M. Ihrig, G. Wang, Y.
- 14 L. Soo, W.N. Mei and C. L. Cheung, Nano. Lett, 2011, 11(7), 2666-2671.